All

What are you looking for?

All
Projects
Results
Organizations

Quick search

  • Projects supported by TA ČR
  • Excellent projects
  • Projects with the highest public support
  • Current projects

Smart search

  • That is how I find a specific +word
  • That is how I leave the -word out of the results
  • “That is how I can find the whole phrase”

E-Discretization of Tori of Exceptional Compact Simple Lie Groups

The result's identifiers

  • Result code in IS VaVaI

    <a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F68407700%3A21340%2F10%3A00179468" target="_blank" >RIV/68407700:21340/10:00179468 - isvavai.cz</a>

  • Result on the web

  • DOI - Digital Object Identifier

Alternative languages

  • Result language

    angličtina

  • Original language name

    E-Discretization of Tori of Exceptional Compact Simple Lie Groups

  • Original language description

    We consider an exceptional compact simple Lie group G, the corresponding affine Weyl group and its even subgroup. Given a positive integer M, we introduce a finite set of lattice points F-M(e). The even affine Weyl group determines the symmetry of the grid F-M(e), the number M determines its density. We present a construction of the set F-M(e) and explicitly count the numbers of its points for the cases of G(2) and F-4. We specify the maximal set of pairwise orthogonal E-functions over F-M(e). This finite set allows us to calculate Fourier like discrete expansions of an arbitrary discrete function on F-M(e).

  • Czech name

  • Czech description

Classification

  • Type

    D - Article in proceedings

  • CEP classification

    BE - Theoretical physics

  • OECD FORD branch

Result continuities

  • Project

  • Continuities

    Z - Vyzkumny zamer (s odkazem do CEZ)

Others

  • Publication year

    2010

  • Confidentiality

    S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů

Data specific for result type

  • Article name in the collection

    XXIX Workshop on Geometric Methods in Physics

  • ISBN

    978-0-7354-0861-6

  • ISSN

    0094-243X

  • e-ISSN

  • Number of pages

    6

  • Pages from-to

    89-94

  • Publisher name

    American Institute of Physics

  • Place of publication

    Melville, New York

  • Event location

    Białowieza

  • Event date

    Jun 27, 2010

  • Type of event by nationality

    WRD - Celosvětová akce

  • UT code for WoS article

    000286908600010