Dual-Root Lattice Discretization of Weyl Orbit Functions
The result's identifiers
Result code in IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F68407700%3A21340%2F19%3A00338524" target="_blank" >RIV/68407700:21340/19:00338524 - isvavai.cz</a>
Result on the web
<a href="https://doi.org/10.1007/s00041-019-09673-1" target="_blank" >https://doi.org/10.1007/s00041-019-09673-1</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.1007/s00041-019-09673-1" target="_blank" >10.1007/s00041-019-09673-1</a>
Alternative languages
Result language
angličtina
Original language name
Dual-Root Lattice Discretization of Weyl Orbit Functions
Original language description
Four types of discrete transforms of Weyl orbit functions on finite point sets are developed. The point sets are formed by intersections of dual-root lattices with fundamental domains of affine Weyl groups. The finite sets of weights, labelling the orbit functions, obey symmetries of the dual extended affine Weyl groups. Fundamental domains of the dual extended affine Weyl groups are detailed in full generality. Identical cardinality of the point and weight sets is proved and explicit counting formulas for these cardinalities are derived. Discrete orthogonality of complex-valued Weyl and real-valued Hartley orbit functions over the point sets is established and the corresponding discrete Fourier-Weyl and Hartley-Weyl transforms are formulated. The unitary transform matrices of the discrete transforms are exemplified.
Czech name
—
Czech description
—
Classification
Type
J<sub>imp</sub> - Article in a specialist periodical, which is included in the Web of Science database
CEP classification
—
OECD FORD branch
10102 - Applied mathematics
Result continuities
Project
—
Continuities
S - Specificky vyzkum na vysokych skolach<br>I - Institucionalni podpora na dlouhodoby koncepcni rozvoj vyzkumne organizace
Others
Publication year
2019
Confidentiality
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Data specific for result type
Name of the periodical
The Journal of Fourier Analysis and Application
ISSN
1069-5869
e-ISSN
1531-5851
Volume of the periodical
25
Issue of the periodical within the volume
5
Country of publishing house
US - UNITED STATES
Number of pages
49
Pages from-to
2521-2569
UT code for WoS article
000504219600010
EID of the result in the Scopus database
2-s2.0-85062787518