Generalized Dual-Root Lattice Transforms of Affine Weyl Groups
The result's identifiers
Result code in IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F68407700%3A21340%2F20%3A00346596" target="_blank" >RIV/68407700:21340/20:00346596 - isvavai.cz</a>
Result on the web
<a href="https://doi.org/10.3390/sym12061018" target="_blank" >https://doi.org/10.3390/sym12061018</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.3390/sym12061018" target="_blank" >10.3390/sym12061018</a>
Alternative languages
Result language
angličtina
Original language name
Generalized Dual-Root Lattice Transforms of Affine Weyl Groups
Original language description
Discrete transforms of Weyl orbit functions on finite fragments of shifted dual root lattices are established. The congruence classes of the dual weight lattices intersected with the fundamental domains of the affine Weyl groups constitute the point sets of the transforms. The shifted weight lattices intersected with the fundamental domains of the extended dual affine Weyl groups form the sets of labels of Weyl orbit functions. The coinciding cardinality of the point and label sets and corresponding discrete orthogonality relations of Weyl orbit functions are demonstrated. The explicit counting formulas for the numbers of elements contained in the point and label sets are calculated. The forward and backward discrete Fourier-Weyl transforms, together with the associated interpolation and Plancherel formulas, are presented. The unitary transform matrices of the discrete transforms are exemplified for the case A2.
Czech name
—
Czech description
—
Classification
Type
J<sub>imp</sub> - Article in a specialist periodical, which is included in the Web of Science database
CEP classification
—
OECD FORD branch
10102 - Applied mathematics
Result continuities
Project
<a href="/en/project/GA19-19535S" target="_blank" >GA19-19535S: Fourier methods of special functions of affine Weyl groups</a><br>
Continuities
P - Projekt vyzkumu a vyvoje financovany z verejnych zdroju (s odkazem do CEP)
Others
Publication year
2020
Confidentiality
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Data specific for result type
Name of the periodical
Symmetry
ISSN
2073-8994
e-ISSN
2073-8994
Volume of the periodical
12
Issue of the periodical within the volume
6
Country of publishing house
CH - SWITZERLAND
Number of pages
38
Pages from-to
—
UT code for WoS article
000553571200001
EID of the result in the Scopus database
2-s2.0-85087522825