Graphene Dots via Discretizations of Weyl-Orbit Functions
The result's identifiers
Result code in IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F68407700%3A21340%2F20%3A00347496" target="_blank" >RIV/68407700:21340/20:00347496 - isvavai.cz</a>
Result on the web
<a href="https://doi.org/10.1007/978-981-15-7775-8_31" target="_blank" >https://doi.org/10.1007/978-981-15-7775-8_31</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.1007/978-981-15-7775-8_31" target="_blank" >10.1007/978-981-15-7775-8_31</a>
Alternative languages
Result language
angličtina
Original language name
Graphene Dots via Discretizations of Weyl-Orbit Functions
Original language description
The application of two fundamental discretizations of Weyl-orbit functions to an electron propagation on the graphene triangular dots are presented. Symmetries of the point and label sets inside dual weight and root lattices of root systems are provided by affine and extended affine Weyl groups. The discrete orthogonality relations of the Weyl-orbit functions over the dual weight and root point sets induce four types of complex discrete Fourier-Weyl transforms. Subtractively combining the transforms of the group induces two types of extended Weyl-orbit functions and their corresponding discrete transforms on the fragment of the honeycomb lattice. Special types of extended Weyl-orbit functions represent stationary states of the electron propagation on the triangular graphene dot with armchair boundaries.
Czech name
—
Czech description
—
Classification
Type
D - Article in proceedings
CEP classification
—
OECD FORD branch
10100 - Mathematics
Result continuities
Project
<a href="/en/project/GA19-19535S" target="_blank" >GA19-19535S: Fourier methods of special functions of affine Weyl groups</a><br>
Continuities
P - Projekt vyzkumu a vyvoje financovany z verejnych zdroju (s odkazem do CEP)
Others
Publication year
2020
Confidentiality
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Data specific for result type
Article name in the collection
Lie Theory and Its Applications in Physics
ISBN
978-981-15-7774-1
ISSN
2194-1009
e-ISSN
—
Number of pages
7
Pages from-to
407-413
Publisher name
Springer Nature Singapore Pte Ltd.
Place of publication
—
Event location
Varna
Event date
Jun 17, 2019
Type of event by nationality
WRD - Celosvětová akce
UT code for WoS article
—