Discrete cosine and sine transforms generalized to honeycomb lattice
The result's identifiers
Result code in IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F68407700%3A21340%2F18%3A00326377" target="_blank" >RIV/68407700:21340/18:00326377 - isvavai.cz</a>
Result on the web
<a href="http://dx.doi.org/10.1063/1.5027101" target="_blank" >http://dx.doi.org/10.1063/1.5027101</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.1063/1.5027101" target="_blank" >10.1063/1.5027101</a>
Alternative languages
Result language
angličtina
Original language name
Discrete cosine and sine transforms generalized to honeycomb lattice
Original language description
The discrete cosine and sine transforms are generalized to a triangular fragment of the honeycomb lattice. The honeycomb point sets are constructed by subtracting the root lattice from the weight lattice points of the crystallographic root system A(2). The two-variable orbit functions of the Weyl group of A(2), discretized simultaneously on the weight and root lattices, induce a novel parametric family of extended Weyl orbit functions. The periodicity and von Neumann and Dirichlet boundary properties of the extended Weyl orbit functions are detailed. Three types of discrete complex Fourier-Weyl transforms and real-valued Hartley-Weyl transforms are described. Unitary transform matrices and interpolating behavior of the discrete transforms are exemplified. Consequences of the developed discrete transforms for transversal eigenvibrations of the mechanical graphene model are discussed.
Czech name
—
Czech description
—
Classification
Type
J<sub>imp</sub> - Article in a specialist periodical, which is included in the Web of Science database
CEP classification
—
OECD FORD branch
10300 - Physical sciences
Result continuities
Project
—
Continuities
S - Specificky vyzkum na vysokych skolach<br>I - Institucionalni podpora na dlouhodoby koncepcni rozvoj vyzkumne organizace
Others
Publication year
2018
Confidentiality
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Data specific for result type
Name of the periodical
Journal of Mathematical Physics
ISSN
0022-2488
e-ISSN
1089-7658
Volume of the periodical
59
Issue of the periodical within the volume
6
Country of publishing house
US - UNITED STATES
Number of pages
26
Pages from-to
—
UT code for WoS article
000437094100042
EID of the result in the Scopus database
2-s2.0-85048311387