Discrete cosine and sine transforms generalized to honeycomb lattice II. Zigzag boundaries
The result's identifiers
Result code in IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F68407700%3A21340%2F21%3A00355856" target="_blank" >RIV/68407700:21340/21:00355856 - isvavai.cz</a>
Result on the web
<a href="https://doi.org/10.1063/5.0048207" target="_blank" >https://doi.org/10.1063/5.0048207</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.1063/5.0048207" target="_blank" >10.1063/5.0048207</a>
Alternative languages
Result language
angličtina
Original language name
Discrete cosine and sine transforms generalized to honeycomb lattice II. Zigzag boundaries
Original language description
The discrete cosine and sine transforms are generalized to a triangular fragment of the honeycomb lattice with zigzag boundaries. The zigzag honeycomb point sets are constructed by subtracting the weight lattice from the refined root lattice points of the crystallographic root system A(2). The two-variable (anti)symmetric orbit functions of the Weyl group of A(2), discretized simultaneously on the triangular fragments of the root and weight lattices, induce a novel parametric family of zigzag extended Weyl and Hartley orbit functions. As specific linear combinations of the original orbit functions, the zigzag extended orbit functions retain the Neumann and Dirichlet boundary conditions. Three types of discrete complex Fourier-Weyl transforms and real-valued Hartley-Weyl transforms are detailed. The corresponding unitary transform matrices and interpolating behavior of the discrete transforms are exemplified.
Czech name
—
Czech description
—
Classification
Type
J<sub>imp</sub> - Article in a specialist periodical, which is included in the Web of Science database
CEP classification
—
OECD FORD branch
10102 - Applied mathematics
Result continuities
Project
<a href="/en/project/GA19-19535S" target="_blank" >GA19-19535S: Fourier methods of special functions of affine Weyl groups</a><br>
Continuities
P - Projekt vyzkumu a vyvoje financovany z verejnych zdroju (s odkazem do CEP)
Others
Publication year
2021
Confidentiality
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Data specific for result type
Name of the periodical
Journal of Mathematical Physics
ISSN
0022-2488
e-ISSN
1089-7658
Volume of the periodical
62
Issue of the periodical within the volume
9
Country of publishing house
US - UNITED STATES
Number of pages
34
Pages from-to
—
UT code for WoS article
000729348900005
EID of the result in the Scopus database
2-s2.0-85114729093