All

What are you looking for?

All
Projects
Results
Organizations

Quick search

  • Projects supported by TA ČR
  • Excellent projects
  • Projects with the highest public support
  • Current projects

Smart search

  • That is how I find a specific +word
  • That is how I leave the -word out of the results
  • “That is how I can find the whole phrase”

Some Remarks on Multisymplectic and Variational Nature of Monge-Ampère Equations in Dimension Four

The result's identifiers

  • Result code in IS VaVaI

    <a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F00216224%3A14310%2F23%3A00133403" target="_blank" >RIV/00216224:14310/23:00133403 - isvavai.cz</a>

  • Result on the web

    <a href="https://link.springer.com/chapter/10.1007/978-3-031-25666-0_3" target="_blank" >https://link.springer.com/chapter/10.1007/978-3-031-25666-0_3</a>

  • DOI - Digital Object Identifier

    <a href="http://dx.doi.org/10.1007/978-3-031-25666-0_3" target="_blank" >10.1007/978-3-031-25666-0_3</a>

Alternative languages

  • Result language

    angličtina

  • Original language name

    Some Remarks on Multisymplectic and Variational Nature of Monge-Ampère Equations in Dimension Four

  • Original language description

    We describe a necessary condition for the local solvability of the strong inverse variational problem in the context of Monge-Ampère partial differential equations and first-order Lagrangians. This condition is based on comparing effective differential forms on the first jet bundle. To illustrate and apply our approach, we study the linear Klein-Gordon equation, first and second heavenly equations of Plebański, Grant equation, and Husain equation, over a real four-dimensional manifold. Two approaches towards multisymplectic formulation of these equations are described.

  • Czech name

  • Czech description

Classification

  • Type

    C - Chapter in a specialist book

  • CEP classification

  • OECD FORD branch

    10100 - Mathematics

Result continuities

  • Project

    <a href="/en/project/GX19-28628X" target="_blank" >GX19-28628X: Homotopy and Homology Methods and Tools Related to Mathematical Physics</a><br>

  • Continuities

    P - Projekt vyzkumu a vyvoje financovany z verejnych zdroju (s odkazem do CEP)<br>S - Specificky vyzkum na vysokych skolach

Others

  • Publication year

    2023

  • Confidentiality

    S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů

Data specific for result type

  • Book/collection name

    Groups, Invariants, Integrals, and Mathematical Physics : The Wisła 20-21 Winter School and Workshop

  • ISBN

    9783031256653

  • Number of pages of the result

    24

  • Pages from-to

    117-140

  • Number of pages of the book

    251

  • Publisher name

    Birkhäuser, Springer Nature

  • Place of publication

    Cham

  • UT code for WoS chapter