Some Remarks on Multisymplectic and Variational Nature of Monge-Ampère Equations in Dimension Four
The result's identifiers
Result code in IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F00216224%3A14310%2F23%3A00133403" target="_blank" >RIV/00216224:14310/23:00133403 - isvavai.cz</a>
Result on the web
<a href="https://link.springer.com/chapter/10.1007/978-3-031-25666-0_3" target="_blank" >https://link.springer.com/chapter/10.1007/978-3-031-25666-0_3</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.1007/978-3-031-25666-0_3" target="_blank" >10.1007/978-3-031-25666-0_3</a>
Alternative languages
Result language
angličtina
Original language name
Some Remarks on Multisymplectic and Variational Nature of Monge-Ampère Equations in Dimension Four
Original language description
We describe a necessary condition for the local solvability of the strong inverse variational problem in the context of Monge-Ampère partial differential equations and first-order Lagrangians. This condition is based on comparing effective differential forms on the first jet bundle. To illustrate and apply our approach, we study the linear Klein-Gordon equation, first and second heavenly equations of Plebański, Grant equation, and Husain equation, over a real four-dimensional manifold. Two approaches towards multisymplectic formulation of these equations are described.
Czech name
—
Czech description
—
Classification
Type
C - Chapter in a specialist book
CEP classification
—
OECD FORD branch
10100 - Mathematics
Result continuities
Project
<a href="/en/project/GX19-28628X" target="_blank" >GX19-28628X: Homotopy and Homology Methods and Tools Related to Mathematical Physics</a><br>
Continuities
P - Projekt vyzkumu a vyvoje financovany z verejnych zdroju (s odkazem do CEP)<br>S - Specificky vyzkum na vysokych skolach
Others
Publication year
2023
Confidentiality
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Data specific for result type
Book/collection name
Groups, Invariants, Integrals, and Mathematical Physics : The Wisła 20-21 Winter School and Workshop
ISBN
9783031256653
Number of pages of the result
24
Pages from-to
117-140
Number of pages of the book
251
Publisher name
Birkhäuser, Springer Nature
Place of publication
Cham
UT code for WoS chapter
—