Solutions with prescribed numbers of focal points of nonoscillatory linear Hamiltonian systems
The result's identifiers
Result code in IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F00216224%3A14310%2F23%3A00134013" target="_blank" >RIV/00216224:14310/23:00134013 - isvavai.cz</a>
Result on the web
<a href="https://link.springer.com/article/10.1007/s00605-022-01780-4" target="_blank" >https://link.springer.com/article/10.1007/s00605-022-01780-4</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.1007/s00605-022-01780-4" target="_blank" >10.1007/s00605-022-01780-4</a>
Alternative languages
Result language
angličtina
Original language name
Solutions with prescribed numbers of focal points of nonoscillatory linear Hamiltonian systems
Original language description
In this paper we present an existence result for conjoined bases of nonoscillatory linear Hamiltonian systems on an unbounded interval, which have prescribed numbers of left and right proper focal points. The result is based on a singular Sturmian separation theorem on an unbounded interval by the authors (2019) and it extends a similar property, which was recently derived for linear Hamiltonian systems on compact interval (2021). At the same time it is new even for completely controllable linear Hamiltonian systems, including higher order Sturm–Liouville differential equations. As the main tools we use the comparative index and properties of the minimal principal solution at infinity, which serves as the reference solution for calculating the numbers of proper focal points. We also provide several examples illustrating the presented theory.
Czech name
—
Czech description
—
Classification
Type
J<sub>imp</sub> - Article in a specialist periodical, which is included in the Web of Science database
CEP classification
—
OECD FORD branch
10101 - Pure mathematics
Result continuities
Project
<a href="/en/project/GA19-01246S" target="_blank" >GA19-01246S: New oscillation theory for linear Hamiltonian and symplectic systems</a><br>
Continuities
P - Projekt vyzkumu a vyvoje financovany z verejnych zdroju (s odkazem do CEP)
Others
Publication year
2023
Confidentiality
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Data specific for result type
Name of the periodical
Monatshefte für Mathematik
ISSN
0026-9255
e-ISSN
1436-5081
Volume of the periodical
200
Issue of the periodical within the volume
2
Country of publishing house
AT - AUSTRIA
Number of pages
29
Pages from-to
359-387
UT code for WoS article
000876636600001
EID of the result in the Scopus database
2-s2.0-85140213986