An orthogonal approach to algebraic weak factorisation systems
The result's identifiers
Result code in IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F00216224%3A14310%2F23%3A00134053" target="_blank" >RIV/00216224:14310/23:00134053 - isvavai.cz</a>
Result on the web
<a href="https://arxiv.org/pdf/2204.09584.pdf" target="_blank" >https://arxiv.org/pdf/2204.09584.pdf</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.1016/j.jpaa.2022.107294" target="_blank" >10.1016/j.jpaa.2022.107294</a>
Alternative languages
Result language
angličtina
Original language name
An orthogonal approach to algebraic weak factorisation systems
Original language description
We describe an equivalent formulation of algebraic weak factorisation systems, not involving monads and comonads, but involving double categories of morphisms equipped with a lifting operation satisfying lifting and factorisation axioms.
Czech name
—
Czech description
—
Classification
Type
J<sub>imp</sub> - Article in a specialist periodical, which is included in the Web of Science database
CEP classification
—
OECD FORD branch
10101 - Pure mathematics
Result continuities
Project
<a href="/en/project/GA22-02964S" target="_blank" >GA22-02964S: Enriched categories and their applications</a><br>
Continuities
P - Projekt vyzkumu a vyvoje financovany z verejnych zdroju (s odkazem do CEP)
Others
Publication year
2023
Confidentiality
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Data specific for result type
Name of the periodical
Journal of Pure and Applied Algebra
ISSN
0022-4049
e-ISSN
1873-1376
Volume of the periodical
227
Issue of the periodical within the volume
6
Country of publishing house
NL - THE KINGDOM OF THE NETHERLANDS
Number of pages
21
Pages from-to
1-21
UT code for WoS article
000901829100004
EID of the result in the Scopus database
2-s2.0-85143965321