Precession-induced Variability in AGN Jets and OJ 287
The result's identifiers
Result code in IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F00216224%3A14310%2F23%3A00134217" target="_blank" >RIV/00216224:14310/23:00134217 - isvavai.cz</a>
Result on the web
<a href="https://iopscience.iop.org/article/10.3847/1538-4357/accbbc" target="_blank" >https://iopscience.iop.org/article/10.3847/1538-4357/accbbc</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.3847/1538-4357/accbbc" target="_blank" >10.3847/1538-4357/accbbc</a>
Alternative languages
Result language
angličtina
Original language name
Precession-induced Variability in AGN Jets and OJ 287
Original language description
The combined study of the flaring of active galactic nuclei (AGNs) at radio wavelengths and parsec-scale jet kinematics with Very Long Baseline Interferometry has led to the view that (i) the observed flares are associated with ejections of synchrotron blobs from the core, and (ii) most of the flaring follows a one-to-one correlation with the ejection of the component. Recent results have added to the mounting evidence showing that the quasi-regular component injections into the relativistic jet may not be the only cause of the flux variability. We propose that AGN flux variability and changes in jet morphology can both be of deterministic nature, i.e., having a geometric/kinetic origin linked to the time-variable Doppler beaming of the jet emission as its direction changes due to precession (and nutation). The physics of the underlying jet leads to shocks, instabilities, or ejections of plasmoids. The appearance (morphology, flux, etc.) of the jet can, however, be strongly affected and modulated by precession. We demonstrate this modulating power of precession for OJ 287. For the first time, we show that the spectral state of the spectral energy distribution (SED) can be directly related to the jet's precession phase. We model the SED evolution and reproduce the precession parameters. Further, we apply our precession model to 11 prominent AGNs. We show that for OJ 287 precession seems to dominate the long-term variability (≳1 yr) of the AGN flux, SED spectral state, and jet morphology, while stochastic processes affect the variability on short timescales (≲0.2 yr).
Czech name
—
Czech description
—
Classification
Type
J<sub>imp</sub> - Article in a specialist periodical, which is included in the Web of Science database
CEP classification
—
OECD FORD branch
10308 - Astronomy (including astrophysics,space science)
Result continuities
Project
<a href="/en/project/GX21-13491X" target="_blank" >GX21-13491X: Exploring the Hot Universe and Understanding Cosmic Feedback</a><br>
Continuities
P - Projekt vyzkumu a vyvoje financovany z verejnych zdroju (s odkazem do CEP)
Others
Publication year
2023
Confidentiality
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Data specific for result type
Name of the periodical
The Astrophysical Journal
ISSN
0004-637X
e-ISSN
1538-4357
Volume of the periodical
951
Issue of the periodical within the volume
2
Country of publishing house
GB - UNITED KINGDOM
Number of pages
38
Pages from-to
1-38
UT code for WoS article
001023159000001
EID of the result in the Scopus database
2-s2.0-85164571108