All

What are you looking for?

All
Projects
Results
Organizations

Quick search

  • Projects supported by TA ČR
  • Excellent projects
  • Projects with the highest public support
  • Current projects

Smart search

  • That is how I find a specific +word
  • That is how I leave the -word out of the results
  • “That is how I can find the whole phrase”

Precession-induced Variability in AGN Jets and OJ 287

The result's identifiers

  • Result code in IS VaVaI

    <a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F00216224%3A14310%2F23%3A00134217" target="_blank" >RIV/00216224:14310/23:00134217 - isvavai.cz</a>

  • Result on the web

    <a href="https://iopscience.iop.org/article/10.3847/1538-4357/accbbc" target="_blank" >https://iopscience.iop.org/article/10.3847/1538-4357/accbbc</a>

  • DOI - Digital Object Identifier

    <a href="http://dx.doi.org/10.3847/1538-4357/accbbc" target="_blank" >10.3847/1538-4357/accbbc</a>

Alternative languages

  • Result language

    angličtina

  • Original language name

    Precession-induced Variability in AGN Jets and OJ 287

  • Original language description

    The combined study of the flaring of active galactic nuclei (AGNs) at radio wavelengths and parsec-scale jet kinematics with Very Long Baseline Interferometry has led to the view that (i) the observed flares are associated with ejections of synchrotron blobs from the core, and (ii) most of the flaring follows a one-to-one correlation with the ejection of the component. Recent results have added to the mounting evidence showing that the quasi-regular component injections into the relativistic jet may not be the only cause of the flux variability. We propose that AGN flux variability and changes in jet morphology can both be of deterministic nature, i.e., having a geometric/kinetic origin linked to the time-variable Doppler beaming of the jet emission as its direction changes due to precession (and nutation). The physics of the underlying jet leads to shocks, instabilities, or ejections of plasmoids. The appearance (morphology, flux, etc.) of the jet can, however, be strongly affected and modulated by precession. We demonstrate this modulating power of precession for OJ 287. For the first time, we show that the spectral state of the spectral energy distribution (SED) can be directly related to the jet's precession phase. We model the SED evolution and reproduce the precession parameters. Further, we apply our precession model to 11 prominent AGNs. We show that for OJ 287 precession seems to dominate the long-term variability (≳1 yr) of the AGN flux, SED spectral state, and jet morphology, while stochastic processes affect the variability on short timescales (≲0.2 yr).

  • Czech name

  • Czech description

Classification

  • Type

    J<sub>imp</sub> - Article in a specialist periodical, which is included in the Web of Science database

  • CEP classification

  • OECD FORD branch

    10308 - Astronomy (including astrophysics,space science)

Result continuities

  • Project

    <a href="/en/project/GX21-13491X" target="_blank" >GX21-13491X: Exploring the Hot Universe and Understanding Cosmic Feedback</a><br>

  • Continuities

    P - Projekt vyzkumu a vyvoje financovany z verejnych zdroju (s odkazem do CEP)

Others

  • Publication year

    2023

  • Confidentiality

    S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů

Data specific for result type

  • Name of the periodical

    The Astrophysical Journal

  • ISSN

    0004-637X

  • e-ISSN

    1538-4357

  • Volume of the periodical

    951

  • Issue of the periodical within the volume

    2

  • Country of publishing house

    GB - UNITED KINGDOM

  • Number of pages

    38

  • Pages from-to

    1-38

  • UT code for WoS article

    001023159000001

  • EID of the result in the Scopus database

    2-s2.0-85164571108