All

What are you looking for?

All
Projects
Results
Organizations

Quick search

  • Projects supported by TA ČR
  • Excellent projects
  • Projects with the highest public support
  • Current projects

Smart search

  • That is how I find a specific +word
  • That is how I leave the -word out of the results
  • “That is how I can find the whole phrase”

OJ287: deciphering the 'Rosetta stone of blazars

The result's identifiers

  • Result code in IS VaVaI

    <a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F67985815%3A_____%2F18%3A00496237" target="_blank" >RIV/67985815:_____/18:00496237 - isvavai.cz</a>

  • Result on the web

    <a href="http://dx.doi.org/10.1093/mnras/sty1026" target="_blank" >http://dx.doi.org/10.1093/mnras/sty1026</a>

  • DOI - Digital Object Identifier

    <a href="http://dx.doi.org/10.1093/mnras/sty1026" target="_blank" >10.1093/mnras/sty1026</a>

Alternative languages

  • Result language

    angličtina

  • Original language name

    OJ287: deciphering the 'Rosetta stone of blazars

  • Original language description

    OJ287 is the best candidate active galactic nucleus (AGN) for hosting a supermassive binary black hole (SMBBH) at very close separation. We present 120 Very Long Baseline Array (VLBA) observations (at 15 GHz) covering the time between April 1995 and April 2017. We find that the OJ287 radio jet is precessing on a time-scale of similar to 22 yr. In addition, our data are consistent with a jet-axis rotation on a yearly time-scale. We model the precession (24 +/- 2 yr) and combined motion of jet precession and jet-axis rotation. The jet motion explains the variability of the total radio flux-density via viewing angle changes and Doppler beaming. Half of the jet-precession time-scale is of the order of the dominant optical periodicity time-scale. We suggest that the optical emission is synchrotron emission and related to the jet radiation. The jet dynamics and flux-density light curves can be understood in terms of geometrical effects. Disturbances of an accretion disc caused by a plunging BH do not seem necessary to explain the observed variability. Although the SMBBH model does not seem necessary to explain the observed variability, an SMBBH or Lense-Thirring precession (disc around single BH) seem to be required to explain the time-scale of the precessing motion. Besides jet rotation also nutation of the jet axis could explain the observed motion of the jet axis. We find a strikingly similar scaling for the time-scales for precession and nutation as indicated for SS433 with a factor of roughly 50 times longer in OJ287.

  • Czech name

  • Czech description

Classification

  • Type

    J<sub>imp</sub> - Article in a specialist periodical, which is included in the Web of Science database

  • CEP classification

  • OECD FORD branch

    10308 - Astronomy (including astrophysics,space science)

Result continuities

  • Project

  • Continuities

    I - Institucionalni podpora na dlouhodoby koncepcni rozvoj vyzkumne organizace

Others

  • Publication year

    2018

  • Confidentiality

    S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů

Data specific for result type

  • Name of the periodical

    Monthly Notices of the Royal Astronomical Society

  • ISSN

    1365-2966

  • e-ISSN

  • Volume of the periodical

    478

  • Issue of the periodical within the volume

    3

  • Country of publishing house

    GB - UNITED KINGDOM

  • Number of pages

    21

  • Pages from-to

    3199-3219

  • UT code for WoS article

    000441282300027

  • EID of the result in the Scopus database