Quasilinear Schrödinger equations with Stein-Weiss type convolution and critical exponential nonlinearity in R^N
The result's identifiers
Result code in IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F00216224%3A14310%2F24%3A00135410" target="_blank" >RIV/00216224:14310/24:00135410 - isvavai.cz</a>
Result on the web
<a href="https://link.springer.com/article/10.1007/s12220-023-01505-5" target="_blank" >https://link.springer.com/article/10.1007/s12220-023-01505-5</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.1007/s12220-023-01505-5" target="_blank" >10.1007/s12220-023-01505-5</a>
Alternative languages
Result language
angličtina
Original language name
Quasilinear Schrödinger equations with Stein-Weiss type convolution and critical exponential nonlinearity in R^N
Original language description
In this article, we investigate the existence of the positive solutions to the following class of quasilinear {Schr"odinger} equations involving Stein-Weiss type convolution begin{align*} -Delta_N u -Delta_N (u^{2})u +V(x)|u|^{N-2}u= left(int_{mathbb R^N}frac{F(y,u)}{|y|^beta|x-y|^{mu}}~dyright)frac{f(x,u)}{|x|^beta} ;; text{ in}; mathbb R^N, end{align*} where $Ngeq 2,,$ $0<mu<N,, betageq 0,$ and $2beta+muleq N.$ The potential $V:mathbb R^Nto mathbb R$ is a continuous function satisfying $0<V_0leq V(x)$ for all $xin mathbb R^N$ and some appropriate assumptions. The nonlinearity $f:mathbb R^Ntimes mathbb Rto mathbb R$ is a continuous function with critical exponential growth in the sense of the Trudinger-Moser inequality and $F(x,s)=int_{0}^s f(x,t)dt$ is the primitive of $f$.
Czech name
—
Czech description
—
Classification
Type
J<sub>imp</sub> - Article in a specialist periodical, which is included in the Web of Science database
CEP classification
—
OECD FORD branch
10101 - Pure mathematics
Result continuities
Project
—
Continuities
I - Institucionalni podpora na dlouhodoby koncepcni rozvoj vyzkumne organizace
Others
Publication year
2024
Confidentiality
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Data specific for result type
Name of the periodical
Journal of Geometric Analysis
ISSN
1050-6926
e-ISSN
1559-002X
Volume of the periodical
34
Issue of the periodical within the volume
2
Country of publishing house
US - UNITED STATES
Number of pages
52
Pages from-to
1-52
UT code for WoS article
001134164400002
EID of the result in the Scopus database
2-s2.0-85181190648