Positive solutions of critical quasilinear elliptic equations in RN
The result's identifiers
Result code in IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F49777513%3A23520%2F99%3A00042035" target="_blank" >RIV/49777513:23520/99:00042035 - isvavai.cz</a>
Result on the web
—
DOI - Digital Object Identifier
—
Alternative languages
Result language
angličtina
Original language name
Positive solutions of critical quasilinear elliptic equations in RN
Original language description
We consider the existence of positive solutions of (1) -Delta_pu=lambda g(x)|u|^{p-2}u+alpha h(x)|u|^{q-2}u+f(x)|u|^{p^*-2}u in R^N where lambda,alphain R, 1<p<N, p^*=Np/(N-p), the critical Sobolev exponent, and 1<q<p^*,qneq p. Let lambda^+_1>0 bthe principal eigenvalue of (2) -Delta_pu=lambda g(x)|u|^{p-2}u in R^N, int_{R^N} g(x)|u|^p>0, with u^+_1>0 the associated eigenfunction. We prove that, if int_{R^N} f|u^+_1|^{p^*}<0, int_{R^N}h|u^+_1|^q>0 if 1<q<p and int_{R^N}h|u^+_1|^q<0 ip<q<p^*, then there exist lambda^*>lambda^=_1 and alpha^*>0, such that for lambda in[lambda^+_1,lambda^*) and alpha in[0,alpha^*), (1) has at least one positive solution.
Czech name
—
Czech description
—
Classification
Type
J<sub>x</sub> - Unclassified - Peer-reviewed scientific article (Jimp, Jsc and Jost)
CEP classification
BA - General mathematics
OECD FORD branch
—
Result continuities
Project
<a href="/en/project/GA201%2F97%2F0395" target="_blank" >GA201/97/0395: Topological and variational methods for nonlinear boundary value problems</a><br>
Continuities
P - Projekt vyzkumu a vyvoje financovany z verejnych zdroju (s odkazem do CEP)<br>Z - Vyzkumny zamer (s odkazem do CEZ)
Others
Publication year
1999
Confidentiality
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Data specific for result type
Name of the periodical
Mathematica Bohemica
ISSN
08627959
e-ISSN
—
Volume of the periodical
Roč.^124
Issue of the periodical within the volume
č.^2 - 3
Country of publishing house
CZ - CZECH REPUBLIC
Number of pages
18
Pages from-to
—
UT code for WoS article
—
EID of the result in the Scopus database
—