All

What are you looking for?

All
Projects
Results
Organizations

Quick search

  • Projects supported by TA ČR
  • Excellent projects
  • Projects with the highest public support
  • Current projects

Smart search

  • That is how I find a specific +word
  • That is how I leave the -word out of the results
  • “That is how I can find the whole phrase”

Colonization dynamic and distribution of the endophytic fungus <i>Microdochium bolleyi</i> in plants measured by qPCR

The result's identifiers

  • Result code in IS VaVaI

    <a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F00216224%3A14310%2F24%3A00135630" target="_blank" >RIV/00216224:14310/24:00135630 - isvavai.cz</a>

  • Result on the web

    <a href="https://journals.plos.org/plosone/article?id=10.1371/journal.pone.0297633" target="_blank" >https://journals.plos.org/plosone/article?id=10.1371/journal.pone.0297633</a>

  • DOI - Digital Object Identifier

    <a href="http://dx.doi.org/10.1371/journal.pone.0297633" target="_blank" >10.1371/journal.pone.0297633</a>

Alternative languages

  • Result language

    angličtina

  • Original language name

    Colonization dynamic and distribution of the endophytic fungus <i>Microdochium bolleyi</i> in plants measured by qPCR

  • Original language description

    Microdochium bolleyi is a fungal endophyte of cereals and grasses proposed as an ideal model organism for studying plant-endophyte interactions. A qPCR-based diagnostic assay was developed to detect M. bolleyi in wheat and Brachypodium distachyon tissues using the species-specific primers MbqITS derived from the ITS of the ribosomal gene. Specificity was tested against 20 fungal organisms associated with barley and wheat. Colonization dynamics, endophyte distribution in the plant, and potential of the seed transmission were analyzed in the wheat and model plant B. distachyon. The colonization of plants by endophyte starts from the germinating seed, where the seed coats are first strongly colonized, then the endophyte spreads to the adjacent parts, crown, roots near the crown, and basal parts of the stem. While in the lower distal parts of roots, the concentration of M. bolleyi DNA did not change significantly in successive samplings (30, 60, 90, 120, and 150 days after inoculation), there was a significant increase over time in the roots 1 cm under crown, crowns and stem bases. The endophyte reaches the higher parts of the base (2-4 cm above the crown) 90 days after sowing in wheat and 150 days in B. distachyon. The endophyte does not reach both host species' leaves, peduncles, and ears. Regarding the potential for seed transmission, endophyte was not detected in harvested grains of plants with heavily colonized roots. Plants grown from seeds derived from parental plants heavily colonized by endophyte did not exhibit any presence of the endophyte, so transmission by seeds was not confirmed. The course of colonization dynamics and distribution in the plant was similar for both hosts tested, with two differences: the base of the wheat stem was colonized earlier, but B. distachyon was occupied more intensively and abundantly than wheat. Thus, the designed species-specific primers could detect and quantify the endophyte in planta.

  • Czech name

  • Czech description

Classification

  • Type

    J<sub>imp</sub> - Article in a specialist periodical, which is included in the Web of Science database

  • CEP classification

  • OECD FORD branch

    40106 - Agronomy, plant breeding and plant protection; (Agricultural biotechnology to be 4.4)

Result continuities

  • Project

  • Continuities

    S - Specificky vyzkum na vysokych skolach

Others

  • Publication year

    2024

  • Confidentiality

    S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů

Data specific for result type

  • Name of the periodical

    Plos one

  • ISSN

    1932-6203

  • e-ISSN

    1932-6203

  • Volume of the periodical

    19

  • Issue of the periodical within the volume

    1

  • Country of publishing house

    US - UNITED STATES

  • Number of pages

    14

  • Pages from-to

    1-14

  • UT code for WoS article

    001158471300089

  • EID of the result in the Scopus database

    2-s2.0-85183518446