All

What are you looking for?

All
Projects
Results
Organizations

Quick search

  • Projects supported by TA ČR
  • Excellent projects
  • Projects with the highest public support
  • Current projects

Smart search

  • That is how I find a specific +word
  • That is how I leave the -word out of the results
  • “That is how I can find the whole phrase”

Green's formulas and Poisson's equation for bosonic Laplacians

The result's identifiers

  • Result code in IS VaVaI

    <a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F00216224%3A14310%2F24%3A00139293" target="_blank" >RIV/00216224:14310/24:00139293 - isvavai.cz</a>

  • Result on the web

    <a href="https://doi.org/10.1002/mma.6922" target="_blank" >https://doi.org/10.1002/mma.6922</a>

  • DOI - Digital Object Identifier

    <a href="http://dx.doi.org/10.1002/mma.6922" target="_blank" >10.1002/mma.6922</a>

Alternative languages

  • Result language

    angličtina

  • Original language name

    Green's formulas and Poisson's equation for bosonic Laplacians

  • Original language description

    A bosonic Laplacian is a conformally invariant second-order differential operator acting on smooth functions defined on domains in Euclidean space and taking values in higher-order irreducible representations of the special orthogonal group. In this paper, we firstly introduce the motivation for study of the generalized Maxwell operators and bosonic Laplacians (also known as the higher spin Laplace operators). Then, with the help of connections between Rarita-Schwinger type operators and bosonic Laplacians, we solve Poisson's equation for bosonic Laplacians. A representation formula for bounded solutions to Poisson's equation in Euclidean space is also provided. In the end, we provide Green's formulas for bosonic Laplacians in scalar-valued and Clifford-valued cases, respectively. These formulas reveal that bosonic Laplacians are self-adjoint with respect to a givenL(2)inner product on certain compact supported function spaces.

  • Czech name

  • Czech description

Classification

  • Type

    J<sub>imp</sub> - Article in a specialist periodical, which is included in the Web of Science database

  • CEP classification

  • OECD FORD branch

    10101 - Pure mathematics

Result continuities

  • Project

    <a href="/en/project/GJ19-14413Y" target="_blank" >GJ19-14413Y: Linear and nonlinear elliptic equations with singular data and related problems</a><br>

  • Continuities

    P - Projekt vyzkumu a vyvoje financovany z verejnych zdroju (s odkazem do CEP)

Others

  • Publication year

    2024

  • Confidentiality

    S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů

Data specific for result type

  • Name of the periodical

    Mathematical Methods in the Applied Sciences

  • ISSN

    0170-4214

  • e-ISSN

    1099-1476

  • Volume of the periodical

    47

  • Issue of the periodical within the volume

    10

  • Country of publishing house

    US - UNITED STATES

  • Number of pages

    12

  • Pages from-to

    7850-7861

  • UT code for WoS article

    000573339100001

  • EID of the result in the Scopus database

    2-s2.0-85091610587