On 2-categorical infinity-cosmoi
The result's identifiers
Result code in IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F00216224%3A14310%2F24%3A00139448" target="_blank" >RIV/00216224:14310/24:00139448 - isvavai.cz</a>
Result on the web
<a href="https://www.sciencedirect.com/science/article/pii/S0022404924000586" target="_blank" >https://www.sciencedirect.com/science/article/pii/S0022404924000586</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.1016/j.jpaa.2024.107661" target="_blank" >10.1016/j.jpaa.2024.107661</a>
Alternative languages
Result language
angličtina
Original language name
On 2-categorical infinity-cosmoi
Original language description
Recently Riehl and Verity have introduced infinity-cosmoi, which are certain simplicially enriched categories with additional structure. In this paper we investigate those infinity-cosmoi which are in fact 2-categories; we shall refer to these as 2-cosmoi. We show that each 2-category with flexible limits gives rise to a 2-cosmos whose distinguished class of isofibrations consists of the normal isofibrations. Many examples arise in this way, and we show that such 2-cosmoi are minimal as Cauchycomplete 2-cosmoi. Finally, we investigate accessible 2-cosmoi and develop a few aspects of their basic theory.
Czech name
—
Czech description
—
Classification
Type
J<sub>imp</sub> - Article in a specialist periodical, which is included in the Web of Science database
CEP classification
—
OECD FORD branch
10101 - Pure mathematics
Result continuities
Project
<a href="/en/project/GA22-02964S" target="_blank" >GA22-02964S: Enriched categories and their applications</a><br>
Continuities
P - Projekt vyzkumu a vyvoje financovany z verejnych zdroju (s odkazem do CEP)
Others
Publication year
2024
Confidentiality
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Data specific for result type
Name of the periodical
Journal of Pure and Applied Algebra
ISSN
0022-4049
e-ISSN
1873-1376
Volume of the periodical
228
Issue of the periodical within the volume
9
Country of publishing house
NL - THE KINGDOM OF THE NETHERLANDS
Number of pages
26
Pages from-to
1-26
UT code for WoS article
001222860900001
EID of the result in the Scopus database
2-s2.0-85189069573