Computing the Tutte Polynomial on Graphs of Bounded Clique-Width (extended abstract)
The result's identifiers
Result code in IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F00216224%3A14330%2F05%3A00012661" target="_blank" >RIV/00216224:14330/05:00012661 - isvavai.cz</a>
Result on the web
—
DOI - Digital Object Identifier
—
Alternative languages
Result language
angličtina
Original language name
Computing the Tutte Polynomial on Graphs of Bounded Clique-Width (extended abstract)
Original language description
The Tutte polynomial is a notoriously hard graph invariant, and efficient algorithms for it are known only for a few special graph classes, like for those of bounded tree-width. The notion of clique-width extends the definition of cograhs (graphs withoutinduced P4), and it is a more general notion than that of tree-width. We show a subexponential algorithm (running in time expO(n2/3) ) for computing the Tutte polynomial on cographs. The algorithm can be extended to a subexponential algorithm computingthe Tutte polynomial on on all graphs of bounded clique-width. In fact, our algorithm computes the more general U-polynomial.
Czech name
—
Czech description
—
Classification
Type
D - Article in proceedings
CEP classification
IN - Informatics
OECD FORD branch
—
Result continuities
Project
Result was created during the realization of more than one project. More information in the Projects tab.
Continuities
P - Projekt vyzkumu a vyvoje financovany z verejnych zdroju (s odkazem do CEP)
Others
Publication year
2005
Confidentiality
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Data specific for result type
Article name in the collection
WG 2005
ISBN
978-3-540-31000-6
ISSN
—
e-ISSN
—
Number of pages
10
Pages from-to
—
Publisher name
Springer Verlag
Place of publication
Berlin
Event location
Metz, France
Event date
Jan 1, 2005
Type of event by nationality
WRD - Celosvětová akce
UT code for WoS article
000234875500006