Some Hard Problems on Matroid Spikes
The result's identifiers
Result code in IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F00216224%3A14330%2F07%3A00020008" target="_blank" >RIV/00216224:14330/07:00020008 - isvavai.cz</a>
Alternative codes found
RIV/61989100:27240/07:00015019
Result on the web
—
DOI - Digital Object Identifier
—
Alternative languages
Result language
angličtina
Original language name
Some Hard Problems on Matroid Spikes
Original language description
Spikes form an interesting class of $3$-connected matroids of branch-width~$3$. We show that some computational problems are hard on spikes with given matrix representations over infinite fields. Namely, the question whether a given spike is the free spike is co-$NP$-hard (though the property itself is definable in monadic second-order logic); and the task to compute the Tutte polynomial of a spike is $#P$-hard (even though that can be solved efficiently on all matroids of bounded branch-width which are represented over a finite field).
Czech name
O některých těžkých problémech na matroidech
Czech description
Ukážeme několik těžkých výpočetních problémů na zvláštních matroidech zvaných spikes reprezentovaných maticemi nad nekonečnými tělesy. Jmenovitě jsou těžké problémy rozeznání volného spike nebo výpočtu Tuttova polynomu nad spike.
Classification
Type
J<sub>x</sub> - Unclassified - Peer-reviewed scientific article (Jimp, Jsc and Jost)
CEP classification
IN - Informatics
OECD FORD branch
—
Result continuities
Project
Result was created during the realization of more than one project. More information in the Projects tab.
Continuities
P - Projekt vyzkumu a vyvoje financovany z verejnych zdroju (s odkazem do CEP)
Others
Publication year
2007
Confidentiality
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Data specific for result type
Name of the periodical
Theory of Computing Systems
ISSN
1432-4350
e-ISSN
—
Volume of the periodical
41
Issue of the periodical within the volume
1
Country of publishing house
US - UNITED STATES
Number of pages
12
Pages from-to
551-562
UT code for WoS article
—
EID of the result in the Scopus database
—