Mining First-Order Frequent Patterns in e-Commerce Data
The result's identifiers
Result code in IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F00216224%3A14330%2F07%3A00041840" target="_blank" >RIV/00216224:14330/07:00041840 - isvavai.cz</a>
Result on the web
—
DOI - Digital Object Identifier
—
Alternative languages
Result language
angličtina
Original language name
Mining First-Order Frequent Patterns in e-Commerce Data
Original language description
This paper presents the first application of first-order frequent patterns for web usage and web content mining in e-commerce - e-commerce usage mining. Two closely cooperating tools for gathering and preprocessing e-commerce data are described. The preprocessed data that are multi-relational in a general case are then mined with RAP, a tool for mining first-order frequent patterns. This framework has been successfully used for mining in real e-commerce data.
Czech name
—
Czech description
—
Classification
Type
D - Article in proceedings
CEP classification
IN - Informatics
OECD FORD branch
—
Result continuities
Project
—
Continuities
V - Vyzkumna aktivita podporovana z jinych verejnych zdroju
Others
Publication year
2007
Confidentiality
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Data specific for result type
Article name in the collection
New Trends in Artificial Intelligence. Proceedings of EPIA 2008
ISBN
978-989-95618-0-9
ISSN
—
e-ISSN
—
Number of pages
12
Pages from-to
—
Publisher name
APPIA, IEEE, AAAI, ECCAI, ACM
Place of publication
Portugalsko
Event location
Guimaraes, Portugalsko
Event date
Jan 1, 2007
Type of event by nationality
EUR - Evropská akce
UT code for WoS article
—