Automata Approach to Graphs of Bounded Rank-width
The result's identifiers
Result code in IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F00216224%3A14330%2F08%3A00025022" target="_blank" >RIV/00216224:14330/08:00025022 - isvavai.cz</a>
Result on the web
—
DOI - Digital Object Identifier
—
Alternative languages
Result language
angličtina
Original language name
Automata Approach to Graphs of Bounded Rank-width
Original language description
Rank-width is a rather new structural graph measure introduced by Oum and Seymour in 2003 in order to find an efficiently computable approximation of clique-width of a graph. Being a very nice graph measure indeed, the only serious drawback of rank-widthwas that it is virtually impossible to use a given rank-decomposition of a graph for running dynamic algorithms on it. We propose a new independent description of rank-decompositions of graphs using labeling parse trees which is, after all, mathematically equivalent to the recent algebraic graph-expression approach to rank-decompositions of Courcelle and Kant'e [WG'07]. We then use our labeling parse trees to build a Myhill-Nerode-type formalism for handling restricted classes of graphs of bounded rank-width, and to directly prove that (an already indirectly known result) all graph properties expressible in MSO logic are decidable by finite automata running on the labeling parse trees.
Czech name
—
Czech description
—
Classification
Type
D - Article in proceedings
CEP classification
IN - Informatics
OECD FORD branch
—
Result continuities
Project
Result was created during the realization of more than one project. More information in the Projects tab.
Continuities
P - Projekt vyzkumu a vyvoje financovany z verejnych zdroju (s odkazem do CEP)
Others
Publication year
2008
Confidentiality
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Data specific for result type
Article name in the collection
International Workshop on Combinatorial Algorithms IWOCA 2008
ISBN
978-1-904987-74-1
ISSN
—
e-ISSN
—
Number of pages
12
Pages from-to
—
Publisher name
Proceedings of the International Workshop on Combinatorial Algorithms 2008, College Publications
Place of publication
United Kingdom
Event location
Nagoya, Japan
Event date
Sep 13, 2008
Type of event by nationality
WRD - Celosvětová akce
UT code for WoS article
—