On parse trees and Myhill-Nerode-type tools for handling graphs of bounded rank-width
The result's identifiers
Result code in IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F00216224%3A14330%2F10%3A00043472" target="_blank" >RIV/00216224:14330/10:00043472 - isvavai.cz</a>
Result on the web
—
DOI - Digital Object Identifier
—
Alternative languages
Result language
angličtina
Original language name
On parse trees and Myhill-Nerode-type tools for handling graphs of bounded rank-width
Original language description
Rank-width is a structural graph measure introduced by Oum and Seymour and aimed at better handling of graphs of bounded clique-width. We propose a formal mathematical framework and tools for easy design of dynamic algorithms running directly on a rankdecomposition of a graph (on contrary to the usual approach which translates a rank decomposition into a clique-width expression, with a possible exponential jump in the parameter). The main advantage of this framework is a fine control over the runtime dependency on the rank-width parameter. Our new approach is linked to a work of Courcelle and Kanté [7] who first proposed algebraic expressions with a so-called bilinear graph product as a better way of handling rank-decompositions, and to a parallel recent research of Bui-Xuan, Telle and Vatshelle.
Czech name
—
Czech description
—
Classification
Type
J<sub>x</sub> - Unclassified - Peer-reviewed scientific article (Jimp, Jsc and Jost)
CEP classification
IN - Informatics
OECD FORD branch
—
Result continuities
Project
Result was created during the realization of more than one project. More information in the Projects tab.
Continuities
Z - Vyzkumny zamer (s odkazem do CEZ)<br>S - Specificky vyzkum na vysokych skolach
Others
Publication year
2010
Confidentiality
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Data specific for result type
Name of the periodical
Discrete Applied Mathematics
ISSN
0166-218X
e-ISSN
—
Volume of the periodical
158
Issue of the periodical within the volume
1
Country of publishing house
NL - THE KINGDOM OF THE NETHERLANDS
Number of pages
17
Pages from-to
—
UT code for WoS article
000276731700014
EID of the result in the Scopus database
—