All

What are you looking for?

All
Projects
Results
Organizations

Quick search

  • Projects supported by TA ČR
  • Excellent projects
  • Projects with the highest public support
  • Current projects

Smart search

  • That is how I find a specific +word
  • That is how I leave the -word out of the results
  • “That is how I can find the whole phrase”

Approximating the Crossing Number of Graphs Embeddable in Any Orientable Surface

The result's identifiers

  • Result code in IS VaVaI

    <a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F00216224%3A14330%2F10%3A00043102" target="_blank" >RIV/00216224:14330/10:00043102 - isvavai.cz</a>

  • Result on the web

  • DOI - Digital Object Identifier

Alternative languages

  • Result language

    angličtina

  • Original language name

    Approximating the Crossing Number of Graphs Embeddable in Any Orientable Surface

  • Original language description

    The crossing number of a graph is the least number of pairwise edge crossings in a drawing of the graph in the plane. We provide an $O(nlog n)$ time constant factor approximation algorithm for the crossing number of a graph of bounded maximum degree which is ``densely enough'' embeddable in an arbitrary fixed orientable surface.

  • Czech name

  • Czech description

Classification

  • Type

    D - Article in proceedings

  • CEP classification

    IN - Informatics

  • OECD FORD branch

Result continuities

  • Project

    Result was created during the realization of more than one project. More information in the Projects tab.

  • Continuities

    P - Projekt vyzkumu a vyvoje financovany z verejnych zdroju (s odkazem do CEP)<br>Z - Vyzkumny zamer (s odkazem do CEZ)<br>S - Specificky vyzkum na vysokych skolach

Others

  • Publication year

    2010

  • Confidentiality

    S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů

Data specific for result type

  • Article name in the collection

    ACM-SIAM Symposium on Discrete Algorithms (SODA 2010)

  • ISBN

    978-0-89871-698-6

  • ISSN

  • e-ISSN

  • Number of pages

    10

  • Pages from-to

  • Publisher name

    SIAM / ACM

  • Place of publication

    USA, internet

  • Event location

    Austin, Texas

  • Event date

    Jan 17, 2010

  • Type of event by nationality

    WRD - Celosvětová akce

  • UT code for WoS article

    000280699900074