Approximating the Crossing Number of Graphs Embeddable in Any Orientable Surface
The result's identifiers
Result code in IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F00216224%3A14330%2F10%3A00043102" target="_blank" >RIV/00216224:14330/10:00043102 - isvavai.cz</a>
Result on the web
—
DOI - Digital Object Identifier
—
Alternative languages
Result language
angličtina
Original language name
Approximating the Crossing Number of Graphs Embeddable in Any Orientable Surface
Original language description
The crossing number of a graph is the least number of pairwise edge crossings in a drawing of the graph in the plane. We provide an $O(nlog n)$ time constant factor approximation algorithm for the crossing number of a graph of bounded maximum degree which is ``densely enough'' embeddable in an arbitrary fixed orientable surface.
Czech name
—
Czech description
—
Classification
Type
D - Article in proceedings
CEP classification
IN - Informatics
OECD FORD branch
—
Result continuities
Project
Result was created during the realization of more than one project. More information in the Projects tab.
Continuities
P - Projekt vyzkumu a vyvoje financovany z verejnych zdroju (s odkazem do CEP)<br>Z - Vyzkumny zamer (s odkazem do CEZ)<br>S - Specificky vyzkum na vysokych skolach
Others
Publication year
2010
Confidentiality
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Data specific for result type
Article name in the collection
ACM-SIAM Symposium on Discrete Algorithms (SODA 2010)
ISBN
978-0-89871-698-6
ISSN
—
e-ISSN
—
Number of pages
10
Pages from-to
—
Publisher name
SIAM / ACM
Place of publication
USA, internet
Event location
Austin, Texas
Event date
Jan 17, 2010
Type of event by nationality
WRD - Celosvětová akce
UT code for WoS article
000280699900074