Learning Decision Rules from Data Streams
The result's identifiers
Result code in IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F00216224%3A14330%2F11%3A00052783" target="_blank" >RIV/00216224:14330/11:00052783 - isvavai.cz</a>
Result on the web
—
DOI - Digital Object Identifier
—
Alternative languages
Result language
angličtina
Original language name
Learning Decision Rules from Data Streams
Original language description
Decision rules, which can provide good interpretability and flexibility for data mining tasks, have received very little attention in the stream mining community so far. This work introduces a decision rule list learner fitted for large amounts of data that achieves competitive results to other methods, both stream and off-line.
Czech name
—
Czech description
—
Classification
Type
D - Article in proceedings
CEP classification
IN - Informatics
OECD FORD branch
—
Result continuities
Project
<a href="/en/project/LA09016" target="_blank" >LA09016: Czech Republic membership in the European Research Consortium for Informatics and Mathematics (ERCIM)</a><br>
Continuities
P - Projekt vyzkumu a vyvoje financovany z verejnych zdroju (s odkazem do CEP)<br>S - Specificky vyzkum na vysokych skolach
Others
Publication year
2011
Confidentiality
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Data specific for result type
Article name in the collection
Proceedings of the Twenty-Second International Joint Conference on Artificial Intelligence
ISBN
978-1-57735-512-0
ISSN
—
e-ISSN
—
Number of pages
6
Pages from-to
1255-1260
Publisher name
AAAI Press/International Joint Conferences on Artificial Intelligence
Place of publication
Menlo Park, California, USA
Event location
Barcelona, Spain
Event date
Jul 16, 2011
Type of event by nationality
WRD - Celosvětová akce
UT code for WoS article
—