All

What are you looking for?

All
Projects
Results
Organizations

Quick search

  • Projects supported by TA ČR
  • Excellent projects
  • Projects with the highest public support
  • Current projects

Smart search

  • That is how I find a specific +word
  • That is how I leave the -word out of the results
  • “That is how I can find the whole phrase”

Vertex Colorings of Graphs without Short Odd Cycles

The result's identifiers

  • Result code in IS VaVaI

    <a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F00216224%3A14330%2F11%3A00063351" target="_blank" >RIV/00216224:14330/11:00063351 - isvavai.cz</a>

  • Result on the web

  • DOI - Digital Object Identifier

Alternative languages

  • Result language

    angličtina

  • Original language name

    Vertex Colorings of Graphs without Short Odd Cycles

  • Original language description

    Motivated by the work of Ne{v{s}}et{v{r}}il and R{"o}dl on ``Partitions of vertices'', we are interested in obtaining some quantitative extensions of their result. In particular, given a natural number $r$ and a graph $G$ of order $m$ with odd girth~$g$, we show the existence of a graph~$H$ with odd girth at least~$g$ and order that is polynomial in $m$ such that every $r$-coloring of the vertices of $H$ yields a monochromatic and induced copy of $G$.

  • Czech name

  • Czech description

Classification

  • Type

    J<sub>x</sub> - Unclassified - Peer-reviewed scientific article (Jimp, Jsc and Jost)

  • CEP classification

    BA - General mathematics

  • OECD FORD branch

Result continuities

  • Project

  • Continuities

    O - Projekt operacniho programu

Others

  • Publication year

    2011

  • Confidentiality

    S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů

Data specific for result type

  • Name of the periodical

    Journal of Graph Theory

  • ISSN

    0364-9024

  • e-ISSN

  • Volume of the periodical

    2011

  • Issue of the periodical within the volume

    3

  • Country of publishing house

    US - UNITED STATES

  • Number of pages

    10

  • Pages from-to

    255-264

  • UT code for WoS article

  • EID of the result in the Scopus database