Vertex Colorings of Graphs without Short Odd Cycles
The result's identifiers
Result code in IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F00216224%3A14330%2F11%3A00063351" target="_blank" >RIV/00216224:14330/11:00063351 - isvavai.cz</a>
Result on the web
—
DOI - Digital Object Identifier
—
Alternative languages
Result language
angličtina
Original language name
Vertex Colorings of Graphs without Short Odd Cycles
Original language description
Motivated by the work of Ne{v{s}}et{v{r}}il and R{"o}dl on ``Partitions of vertices'', we are interested in obtaining some quantitative extensions of their result. In particular, given a natural number $r$ and a graph $G$ of order $m$ with odd girth~$g$, we show the existence of a graph~$H$ with odd girth at least~$g$ and order that is polynomial in $m$ such that every $r$-coloring of the vertices of $H$ yields a monochromatic and induced copy of $G$.
Czech name
—
Czech description
—
Classification
Type
J<sub>x</sub> - Unclassified - Peer-reviewed scientific article (Jimp, Jsc and Jost)
CEP classification
BA - General mathematics
OECD FORD branch
—
Result continuities
Project
—
Continuities
O - Projekt operacniho programu
Others
Publication year
2011
Confidentiality
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Data specific for result type
Name of the periodical
Journal of Graph Theory
ISSN
0364-9024
e-ISSN
—
Volume of the periodical
2011
Issue of the periodical within the volume
3
Country of publishing house
US - UNITED STATES
Number of pages
10
Pages from-to
255-264
UT code for WoS article
—
EID of the result in the Scopus database
—