On Induced Folkman Numbers
The result's identifiers
Result code in IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F00216224%3A14330%2F12%3A00063355" target="_blank" >RIV/00216224:14330/12:00063355 - isvavai.cz</a>
Result on the web
<a href="http://dx.doi.org/10.1002/rsa.20397" target="_blank" >http://dx.doi.org/10.1002/rsa.20397</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.1002/rsa.20397" target="_blank" >10.1002/rsa.20397</a>
Alternative languages
Result language
angličtina
Original language name
On Induced Folkman Numbers
Original language description
In 1970, Folkman proved that for any graph~$G$ there exists a graph~$H$ with the same clique number as~$G$. In addition, any $r$-coloring of the vertices of~$H$ yields a monochromatic copy of~$G$. For a given graph $G$ and a number of colors~$r$ let $f(G,r)$ be the order of the smallest graph~$H$ with the above properties. In this paper, we give a relatively small upper bound on~$f(G,r)$ as a function of the order of~$G$ and its clique number.
Czech name
—
Czech description
—
Classification
Type
J<sub>x</sub> - Unclassified - Peer-reviewed scientific article (Jimp, Jsc and Jost)
CEP classification
BA - General mathematics
OECD FORD branch
—
Result continuities
Project
—
Continuities
O - Projekt operacniho programu
Others
Publication year
2012
Confidentiality
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Data specific for result type
Name of the periodical
Random Structures & Algorithms
ISSN
1042-9832
e-ISSN
—
Volume of the periodical
40
Issue of the periodical within the volume
4
Country of publishing house
US - UNITED STATES
Number of pages
8
Pages from-to
493-500
UT code for WoS article
000303919000006
EID of the result in the Scopus database
—