Some remarks on vertex Folkman numbers for hypergraphs
The result's identifiers
Result code in IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F00216224%3A14330%2F12%3A00063356" target="_blank" >RIV/00216224:14330/12:00063356 - isvavai.cz</a>
Result on the web
<a href="http://dx.doi.org/10.1016/j.disc.2012.06.014" target="_blank" >http://dx.doi.org/10.1016/j.disc.2012.06.014</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.1016/j.disc.2012.06.014" target="_blank" >10.1016/j.disc.2012.06.014</a>
Alternative languages
Result language
angličtina
Original language name
Some remarks on vertex Folkman numbers for hypergraphs
Original language description
Let $F(r,G)$ be the least order of $H$ such that the clique number of $H$ and $G$ are equal and any $r$-coloring of the vertices of $H$ yields a monochromatic and induced copy of $G$. The problem of bounding of $F(r,G)$ was studied by several authors andit is well understood. In this note, we extend those results to $k$-uniform hypergraphs.
Czech name
—
Czech description
—
Classification
Type
J<sub>x</sub> - Unclassified - Peer-reviewed scientific article (Jimp, Jsc and Jost)
CEP classification
BA - General mathematics
OECD FORD branch
—
Result continuities
Project
—
Continuities
O - Projekt operacniho programu
Others
Publication year
2012
Confidentiality
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Data specific for result type
Name of the periodical
Discrete Mathematics
ISSN
0012-365X
e-ISSN
—
Volume of the periodical
312
Issue of the periodical within the volume
19
Country of publishing house
US - UNITED STATES
Number of pages
6
Pages from-to
2952-2957
UT code for WoS article
000307695400011
EID of the result in the Scopus database
—