Forbidden pairs of disconnected graphs implying hamiltonicity
The result's identifiers
Result code in IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F49777513%3A23520%2F17%3A43932688" target="_blank" >RIV/49777513:23520/17:43932688 - isvavai.cz</a>
Result on the web
<a href="http://dx.doi.org/10.1002/jgt.22024" target="_blank" >http://dx.doi.org/10.1002/jgt.22024</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.1002/jgt.22024" target="_blank" >10.1002/jgt.22024</a>
Alternative languages
Result language
angličtina
Original language name
Forbidden pairs of disconnected graphs implying hamiltonicity
Original language description
Let H be a given graph. A graph G is said to be H-free if G contains no induced copies of H. For a class F of graphs, the graph G is F-free if G is H-free for every H in F. Bedrossian characterized all the pairs {R,S} of connected subgraphs such that every 2-connected {R,S}-free graph is hamiltonian. Faudree and Gould extended Bedrossian's result by proving the necessity part of the result based on infinite families of non-hamiltonian graphs. In this article, we characterize all pairs {R,S} of (not necessarily connected) graphs such that there exists an integer n0 such that every 2-connected {R,S}-free graph of order at least n0 is hamiltonian.
Czech name
—
Czech description
—
Classification
Type
J<sub>imp</sub> - Article in a specialist periodical, which is included in the Web of Science database
CEP classification
—
OECD FORD branch
10101 - Pure mathematics
Result continuities
Project
Result was created during the realization of more than one project. More information in the Projects tab.
Continuities
P - Projekt vyzkumu a vyvoje financovany z verejnych zdroju (s odkazem do CEP)
Others
Publication year
2017
Confidentiality
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Data specific for result type
Name of the periodical
Journal of Graph Theory
ISSN
0364-9024
e-ISSN
—
Volume of the periodical
84
Issue of the periodical within the volume
3
Country of publishing house
US - UNITED STATES
Number of pages
13
Pages from-to
249-261
UT code for WoS article
000393323500003
EID of the result in the Scopus database
—