Hamiltonovske problémy v dědičných třidách grafů charakterizované zakázanými indukovanými podgrafy.
The result's identifiers
Result code in IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F49777513%3A23520%2F09%3A00501757" target="_blank" >RIV/49777513:23520/09:00501757 - isvavai.cz</a>
Result on the web
—
DOI - Digital Object Identifier
—
Alternative languages
Result language
angličtina
Original language name
Hamiltonovske problémy v dědičných třidách grafů charakterizované zakázanými indukovanými podgrafy.
Original language description
Luczak and Pfender cite{88} proved that if a graph $G$ is 3-connected and $K_{1,3}P_{11}$-free, then $G$ is hamiltonian. Moreover, Luczak et al. cite{8} showed an example a non hamiltonian 3-connected $CP_{12}$-free graph. This result give a motivationto find an upper bound for the number $i$ such that every 3-connected $CZ_{i}$-free graph is hamiltonian. We will show that if a $G$ is 3-connected and $CZ_{6}$-free graph, then $G$ is hamiltonian. Pairs of connected graphs $X,Y$ such that a graph $G$ being 2-connected and $XY$-free implies $G$ is hamiltonian were characterized by Bedrossian. Using the closure concept for claw-free graphs, Ryj' av cek simplified the characterization by showing that if considering the closure of $G$, the list in the Bedrossian's characterization can be reduced to one pair, namely, $K_{1,3},N_{1,1,1}$ (where $K_{i,j}$ is the complete bipartite graph, and $N_{i,j,k}$ is the graph obtained by identifying end vertices of three disjoint paths of l
Czech name
—
Czech description
—
Classification
Type
O - Miscellaneous
CEP classification
BA - General mathematics
OECD FORD branch
—
Result continuities
Project
—
Continuities
S - Specificky vyzkum na vysokych skolach
Others
Publication year
2009
Confidentiality
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů