All

What are you looking for?

All
Projects
Results
Organizations

Quick search

  • Projects supported by TA ČR
  • Excellent projects
  • Projects with the highest public support
  • Current projects

Smart search

  • That is how I find a specific +word
  • That is how I leave the -word out of the results
  • “That is how I can find the whole phrase”

Pairs of heavy subgraphs for hamiltonicity of 2-connected graphs

The result's identifiers

  • Result code in IS VaVaI

    <a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F49777513%3A23520%2F12%3A43915719" target="_blank" >RIV/49777513:23520/12:43915719 - isvavai.cz</a>

  • Result on the web

    <a href="http://epubs.siam.org/doi/abs/10.1137/11084786X" target="_blank" >http://epubs.siam.org/doi/abs/10.1137/11084786X</a>

  • DOI - Digital Object Identifier

    <a href="http://dx.doi.org/10.1137/11084786X" target="_blank" >10.1137/11084786X</a>

Alternative languages

  • Result language

    angličtina

  • Original language name

    Pairs of heavy subgraphs for hamiltonicity of 2-connected graphs

  • Original language description

    Let G be a graph on n vertices. An induced subgraph H of G is called heavy if there exist two nonadjacent vertices in H with degree sum at least n in G. We say that G is H-heavy if every induced subgraph of G isomorphic to H is heavy. In this paper we characterize all connected graphs R and S other than P(3) (the path on three vertices) such that every 2-connected {R, S}-heavy graph is Hamiltonian. This extends several previous results on forbidden subgraph conditions for Hamiltonian graphs.

  • Czech name

  • Czech description

Classification

  • Type

    J<sub>x</sub> - Unclassified - Peer-reviewed scientific article (Jimp, Jsc and Jost)

  • CEP classification

    BA - General mathematics

  • OECD FORD branch

Result continuities

  • Project

    Result was created during the realization of more than one project. More information in the Projects tab.

  • Continuities

    P - Projekt vyzkumu a vyvoje financovany z verejnych zdroju (s odkazem do CEP)

Others

  • Publication year

    2012

  • Confidentiality

    S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů

Data specific for result type

  • Name of the periodical

    SIAM JOURNAL ON DISCRETE MATHEMATICS

  • ISSN

    0895-4801

  • e-ISSN

  • Volume of the periodical

    26

  • Issue of the periodical within the volume

    3

  • Country of publishing house

    US - UNITED STATES

  • Number of pages

    16

  • Pages from-to

    1088-1103

  • UT code for WoS article

  • EID of the result in the Scopus database