Heavy subgraph conditions for longest cycles to be heavy in graphs
The result's identifiers
Result code in IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F49777513%3A23520%2F16%3A43928609" target="_blank" >RIV/49777513:23520/16:43928609 - isvavai.cz</a>
Result on the web
<a href="http://dx.doi.org/10.7151/dmgt.1863" target="_blank" >http://dx.doi.org/10.7151/dmgt.1863</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.7151/dmgt.1863" target="_blank" >10.7151/dmgt.1863</a>
Alternative languages
Result language
angličtina
Original language name
Heavy subgraph conditions for longest cycles to be heavy in graphs
Original language description
Let G be a graph on n vertices. A vertex of G with degree at least n/2 is called a heavy vertex, and a cycle of G which contains all the heavy vertices of G is called a heavy cycle. In this note, we characterize graphs which contain no heavy cycles. For a given graph H, we say that G is H-heavy if every induced subgraph of G isomorphic to H contains two nonadjacent vertices with degree sum at least n. We find all the connected graphs S such that a 2-connected graph G being S-heavy implies any longest cycle of G is a heavy cycle.
Czech name
—
Czech description
—
Classification
Type
J<sub>x</sub> - Unclassified - Peer-reviewed scientific article (Jimp, Jsc and Jost)
CEP classification
BA - General mathematics
OECD FORD branch
—
Result continuities
Project
<a href="/en/project/EE2.3.30.0038" target="_blank" >EE2.3.30.0038: New excellence in human resources</a><br>
Continuities
P - Projekt vyzkumu a vyvoje financovany z verejnych zdroju (s odkazem do CEP)
Others
Publication year
2016
Confidentiality
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Data specific for result type
Name of the periodical
Discussiones Mathematicae Graph Theory
ISSN
1234-3099
e-ISSN
—
Volume of the periodical
36
Issue of the periodical within the volume
2
Country of publishing house
PL - POLAND
Number of pages
10
Pages from-to
383-392
UT code for WoS article
—
EID of the result in the Scopus database
2-s2.0-84962843833