Kernelization Using Structural Parameters on Sparse Graph Classes
The result's identifiers
Result code in IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F00216224%3A14330%2F13%3A00066378" target="_blank" >RIV/00216224:14330/13:00066378 - isvavai.cz</a>
Result on the web
<a href="http://dx.doi.org/10.1007/978-3-642-40450-4_45" target="_blank" >http://dx.doi.org/10.1007/978-3-642-40450-4_45</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.1007/978-3-642-40450-4_45" target="_blank" >10.1007/978-3-642-40450-4_45</a>
Alternative languages
Result language
angličtina
Original language name
Kernelization Using Structural Parameters on Sparse Graph Classes
Original language description
Meta-theorems for polynomial (linear) kernels have been the subject of intensive research in parameterized complexity. Heretofore, there were meta-theorems for linear kernels on graphs of bounded genus, H-minor-free graphs, and H-topological-minor-free graphs. To the best of our knowledge, there are no known meta-theorems for kernels for any of the larger sparse graph classes: graphs of bounded expansion, locally bounded expansion, and nowhere dense graphs. In this paper we prove meta-theorems for thesethree graph classes. More specifically, we show that graph problems that have finite integer index (FII) admit linear kernels on hereditary graphs of bounded expansion when parameterized by the size of a modulator to constant-treedepth graphs. For hereditary graph classes of locally bounded expansion, our result yields a quadratic kernel and for hereditary nowhere dense graphs, a polynomial kernel.
Czech name
—
Czech description
—
Classification
Type
D - Article in proceedings
CEP classification
IN - Informatics
OECD FORD branch
—
Result continuities
Project
Result was created during the realization of more than one project. More information in the Projects tab.
Continuities
P - Projekt vyzkumu a vyvoje financovany z verejnych zdroju (s odkazem do CEP)<br>S - Specificky vyzkum na vysokych skolach
Others
Publication year
2013
Confidentiality
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Data specific for result type
Article name in the collection
ESA 2013
ISBN
9783642404498
ISSN
0302-9743
e-ISSN
—
Number of pages
12
Pages from-to
529-540
Publisher name
Springer
Place of publication
Berlin Heidelberg
Event location
Sophia Antipolis, France
Event date
Jan 1, 2013
Type of event by nationality
WRD - Celosvětová akce
UT code for WoS article
—