All

What are you looking for?

All
Projects
Results
Organizations

Quick search

  • Projects supported by TA ČR
  • Excellent projects
  • Projects with the highest public support
  • Current projects

Smart search

  • That is how I find a specific +word
  • That is how I leave the -word out of the results
  • “That is how I can find the whole phrase”

Kernelization Using Structural Parameters on Sparse Graph Classes

The result's identifiers

  • Result code in IS VaVaI

    <a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F00216224%3A14330%2F13%3A00066378" target="_blank" >RIV/00216224:14330/13:00066378 - isvavai.cz</a>

  • Result on the web

    <a href="http://dx.doi.org/10.1007/978-3-642-40450-4_45" target="_blank" >http://dx.doi.org/10.1007/978-3-642-40450-4_45</a>

  • DOI - Digital Object Identifier

    <a href="http://dx.doi.org/10.1007/978-3-642-40450-4_45" target="_blank" >10.1007/978-3-642-40450-4_45</a>

Alternative languages

  • Result language

    angličtina

  • Original language name

    Kernelization Using Structural Parameters on Sparse Graph Classes

  • Original language description

    Meta-theorems for polynomial (linear) kernels have been the subject of intensive research in parameterized complexity. Heretofore, there were meta-theorems for linear kernels on graphs of bounded genus, H-minor-free graphs, and H-topological-minor-free graphs. To the best of our knowledge, there are no known meta-theorems for kernels for any of the larger sparse graph classes: graphs of bounded expansion, locally bounded expansion, and nowhere dense graphs. In this paper we prove meta-theorems for thesethree graph classes. More specifically, we show that graph problems that have finite integer index (FII) admit linear kernels on hereditary graphs of bounded expansion when parameterized by the size of a modulator to constant-treedepth graphs. For hereditary graph classes of locally bounded expansion, our result yields a quadratic kernel and for hereditary nowhere dense graphs, a polynomial kernel.

  • Czech name

  • Czech description

Classification

  • Type

    D - Article in proceedings

  • CEP classification

    IN - Informatics

  • OECD FORD branch

Result continuities

  • Project

    Result was created during the realization of more than one project. More information in the Projects tab.

  • Continuities

    P - Projekt vyzkumu a vyvoje financovany z verejnych zdroju (s odkazem do CEP)<br>S - Specificky vyzkum na vysokych skolach

Others

  • Publication year

    2013

  • Confidentiality

    S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů

Data specific for result type

  • Article name in the collection

    ESA 2013

  • ISBN

    9783642404498

  • ISSN

    0302-9743

  • e-ISSN

  • Number of pages

    12

  • Pages from-to

    529-540

  • Publisher name

    Springer

  • Place of publication

    Berlin Heidelberg

  • Event location

    Sophia Antipolis, France

  • Event date

    Jan 1, 2013

  • Type of event by nationality

    WRD - Celosvětová akce

  • UT code for WoS article