All

What are you looking for?

All
Projects
Results
Organizations

Quick search

  • Projects supported by TA ČR
  • Excellent projects
  • Projects with the highest public support
  • Current projects

Smart search

  • That is how I find a specific +word
  • That is how I leave the -word out of the results
  • “That is how I can find the whole phrase”

Meta-kernelization with structural parameters

The result's identifiers

  • Result code in IS VaVaI

    <a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F00216224%3A14330%2F16%3A00100544" target="_blank" >RIV/00216224:14330/16:00100544 - isvavai.cz</a>

  • Result on the web

    <a href="http://dx.doi.org/10.1016/j.jcss.2015.08.003" target="_blank" >http://dx.doi.org/10.1016/j.jcss.2015.08.003</a>

  • DOI - Digital Object Identifier

    <a href="http://dx.doi.org/10.1016/j.jcss.2015.08.003" target="_blank" >10.1016/j.jcss.2015.08.003</a>

Alternative languages

  • Result language

    angličtina

  • Original language name

    Meta-kernelization with structural parameters

  • Original language description

    Kernelization is a polynomial-time algorithm that reduces an instance of a parameterized problem to a decision-equivalent instance, the kernel, whose size is bounded by a function of the parameter. In this paper we present meta-theorems that provide polynomial kernels for large classes of graph problems parameterized by a structural parameter of the input graph. Let be an arbitrary but fixed class of graphs of bounded rank-width (or, equivalently, of bounded clique-width). We define the -cover number of a graph to be the smallest number of modules its vertex set can be partitioned into, such that each module induces a subgraph that belongs to . We show that each decision problem on graphs which is expressible in Monadic Second Order (MSO) logic has a polynomial kernel with a linear number of vertices when parameterized by the -cover number. We provide similar results for MSO expressible optimization and modulo-counting problems.

  • Czech name

  • Czech description

Classification

  • Type

    J<sub>imp</sub> - Article in a specialist periodical, which is included in the Web of Science database

  • CEP classification

  • OECD FORD branch

    10200 - Computer and information sciences

Result continuities

  • Project

  • Continuities

    Z - Vyzkumny zamer (s odkazem do CEZ)

Others

  • Publication year

    2016

  • Confidentiality

    S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů

Data specific for result type

  • Name of the periodical

    Journal of Computer and System Sciences

  • ISSN

    0022-0000

  • e-ISSN

  • Volume of the periodical

    82

  • Issue of the periodical within the volume

    2

  • Country of publishing house

    NL - THE KINGDOM OF THE NETHERLANDS

  • Number of pages

    14

  • Pages from-to

    333-346

  • UT code for WoS article

    000366240700009

  • EID of the result in the Scopus database

    2-s2.0-84955656358