All

What are you looking for?

All
Projects
Results
Organizations

Quick search

  • Projects supported by TA ČR
  • Excellent projects
  • Projects with the highest public support
  • Current projects

Smart search

  • That is how I find a specific +word
  • That is how I leave the -word out of the results
  • “That is how I can find the whole phrase”

Computing the stretch of an embedded graph

The result's identifiers

  • Result code in IS VaVaI

    <a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F00216224%3A14330%2F14%3A00074093" target="_blank" >RIV/00216224:14330/14:00074093 - isvavai.cz</a>

  • Result on the web

    <a href="http://dx.doi.org/10.1137/130945636" target="_blank" >http://dx.doi.org/10.1137/130945636</a>

  • DOI - Digital Object Identifier

    <a href="http://dx.doi.org/10.1137/130945636" target="_blank" >10.1137/130945636</a>

Alternative languages

  • Result language

    angličtina

  • Original language name

    Computing the stretch of an embedded graph

  • Original language description

    Let G be a graph embedded in an orientable surface Sigma, possibly with edge weights, and denote by len(gamma) the length (the number of edges or the sum of the edge weights) of a cycle. in G. The stretch of a graph embedded on a surface is the minimum of len(alpha) . len(beta) over all pairs of cycles alpha and beta that cross exactly once. We provide two algorithms to compute the stretch of an embedded graph, each based on a different principle. The first algorithm is based on surgery and computes thestretch in time O(g(4)n log n) with high probability, or in time O(g(4)n log(2) n) in the worst case, where g is the genus of the surface S and n is the number of vertices in G. The second algorithm is based on using a short homology basis and computesthe stretch in time O(n(2) log n + n(2)g + ng(3)).

  • Czech name

  • Czech description

Classification

  • Type

    J<sub>x</sub> - Unclassified - Peer-reviewed scientific article (Jimp, Jsc and Jost)

  • CEP classification

    BA - General mathematics

  • OECD FORD branch

Result continuities

  • Project

    <a href="/en/project/GEGIG%2F11%2FE023" target="_blank" >GEGIG/11/E023: Graph Drawings and Representations</a><br>

  • Continuities

    P - Projekt vyzkumu a vyvoje financovany z verejnych zdroju (s odkazem do CEP)

Others

  • Publication year

    2014

  • Confidentiality

    S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů

Data specific for result type

  • Name of the periodical

    SIAM Journal on Discrete Mathematics

  • ISSN

    0895-4801

  • e-ISSN

  • Volume of the periodical

    28

  • Issue of the periodical within the volume

    3

  • Country of publishing house

    US - UNITED STATES

  • Number of pages

    11

  • Pages from-to

    1391-1401

  • UT code for WoS article

    000343230800019

  • EID of the result in the Scopus database