Computing the stretch of an embedded graph
The result's identifiers
Result code in IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F00216224%3A14330%2F14%3A00074093" target="_blank" >RIV/00216224:14330/14:00074093 - isvavai.cz</a>
Result on the web
<a href="http://dx.doi.org/10.1137/130945636" target="_blank" >http://dx.doi.org/10.1137/130945636</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.1137/130945636" target="_blank" >10.1137/130945636</a>
Alternative languages
Result language
angličtina
Original language name
Computing the stretch of an embedded graph
Original language description
Let G be a graph embedded in an orientable surface Sigma, possibly with edge weights, and denote by len(gamma) the length (the number of edges or the sum of the edge weights) of a cycle. in G. The stretch of a graph embedded on a surface is the minimum of len(alpha) . len(beta) over all pairs of cycles alpha and beta that cross exactly once. We provide two algorithms to compute the stretch of an embedded graph, each based on a different principle. The first algorithm is based on surgery and computes thestretch in time O(g(4)n log n) with high probability, or in time O(g(4)n log(2) n) in the worst case, where g is the genus of the surface S and n is the number of vertices in G. The second algorithm is based on using a short homology basis and computesthe stretch in time O(n(2) log n + n(2)g + ng(3)).
Czech name
—
Czech description
—
Classification
Type
J<sub>x</sub> - Unclassified - Peer-reviewed scientific article (Jimp, Jsc and Jost)
CEP classification
BA - General mathematics
OECD FORD branch
—
Result continuities
Project
<a href="/en/project/GEGIG%2F11%2FE023" target="_blank" >GEGIG/11/E023: Graph Drawings and Representations</a><br>
Continuities
P - Projekt vyzkumu a vyvoje financovany z verejnych zdroju (s odkazem do CEP)
Others
Publication year
2014
Confidentiality
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Data specific for result type
Name of the periodical
SIAM Journal on Discrete Mathematics
ISSN
0895-4801
e-ISSN
—
Volume of the periodical
28
Issue of the periodical within the volume
3
Country of publishing house
US - UNITED STATES
Number of pages
11
Pages from-to
1391-1401
UT code for WoS article
000343230800019
EID of the result in the Scopus database
—