Towards Fast Multimedia Feature Extraction: Hadoop or Storm
The result's identifiers
Result code in IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F00216224%3A14330%2F14%3A00074391" target="_blank" >RIV/00216224:14330/14:00074391 - isvavai.cz</a>
Result on the web
—
DOI - Digital Object Identifier
—
Alternative languages
Result language
angličtina
Original language name
Towards Fast Multimedia Feature Extraction: Hadoop or Storm
Original language description
The current explosion of data accelerated evolution of various content-based indexing techniques that allow to efficiently search in multimedia data such as images. However, indexable features must be first extracted from the raw images before the indexing. This necessary step can be very time consuming for large datasets thus parallelization is desirable to speed the process up. In this paper, we experimentally compare two approaches to distribute the task among multiple machines: the Apache Hadoop andthe Apache Storm projects.
Czech name
—
Czech description
—
Classification
Type
D - Article in proceedings
CEP classification
IN - Informatics
OECD FORD branch
—
Result continuities
Project
<a href="/en/project/GBP103%2F12%2FG084" target="_blank" >GBP103/12/G084: Center for Large Scale Multi-modal Data Interpretation</a><br>
Continuities
P - Projekt vyzkumu a vyvoje financovany z verejnych zdroju (s odkazem do CEP)
Others
Publication year
2014
Confidentiality
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Data specific for result type
Article name in the collection
Proceedings of 2014 IEEE International Symposium on Multimedia (ISM)
ISBN
9781479943111
ISSN
—
e-ISSN
—
Number of pages
4
Pages from-to
106-109
Publisher name
IEEE Computer Society Publications
Place of publication
Washington, DC
Event location
Taichung, Taiwan
Event date
Dec 10, 2014
Type of event by nationality
WRD - Celosvětová akce
UT code for WoS article
—