Speeding up the multimedia feature extraction: a comparative study on the big data approach
The result's identifiers
Result code in IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F00216224%3A14330%2F17%3A00094702" target="_blank" >RIV/00216224:14330/17:00094702 - isvavai.cz</a>
Result on the web
<a href="http://dx.doi.org/10.1007/s11042-016-3415-1" target="_blank" >http://dx.doi.org/10.1007/s11042-016-3415-1</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.1007/s11042-016-3415-1" target="_blank" >10.1007/s11042-016-3415-1</a>
Alternative languages
Result language
angličtina
Original language name
Speeding up the multimedia feature extraction: a comparative study on the big data approach
Original language description
The current explosion of multimedia data is significantly increasing the amount of potential knowledge. However, to get to the actual information requires to apply novel content-based techniques which in turn require time consuming extraction of indexable features from the raw data. In order to deal with large datasets, this task needs to be parallelized. However, there are multiple approaches to choose from, each with its own benefits and drawbacks. There are also several parameters that must be taken into consideration, for example the amount of available resources, the size of the data and their availability. In this paper, we empirically evaluate and compare approaches based on Apache Hadoop, Apache Storm, Apache Spark, and Grid computing, employed to distribute the extraction task over an outsourced and distributed infrastructure.
Czech name
—
Czech description
—
Classification
Type
J<sub>imp</sub> - Article in a specialist periodical, which is included in the Web of Science database
CEP classification
—
OECD FORD branch
10201 - Computer sciences, information science, bioinformathics (hardware development to be 2.2, social aspect to be 5.8)
Result continuities
Project
<a href="/en/project/GBP103%2F12%2FG084" target="_blank" >GBP103/12/G084: Center for Large Scale Multi-modal Data Interpretation</a><br>
Continuities
P - Projekt vyzkumu a vyvoje financovany z verejnych zdroju (s odkazem do CEP)
Others
Publication year
2017
Confidentiality
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Data specific for result type
Name of the periodical
Multimedia Tools and Applications
ISSN
1380-7501
e-ISSN
—
Volume of the periodical
76
Issue of the periodical within the volume
5
Country of publishing house
US - UNITED STATES
Number of pages
21
Pages from-to
7497-7517
UT code for WoS article
000397278400062
EID of the result in the Scopus database
2-s2.0-84960356866