Genus distributions of cubic series-parallel graphs
The result's identifiers
Result code in IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F00216224%3A14330%2F14%3A00080217" target="_blank" >RIV/00216224:14330/14:00080217 - isvavai.cz</a>
Result on the web
<a href="http://www.dmtcs.org/dmtcs-ojs/index.php/dmtcs/article/viewArticle/2146" target="_blank" >http://www.dmtcs.org/dmtcs-ojs/index.php/dmtcs/article/viewArticle/2146</a>
DOI - Digital Object Identifier
—
Alternative languages
Result language
angličtina
Original language name
Genus distributions of cubic series-parallel graphs
Original language description
We derive a quadratic-time algorithm for the genus distribution of any 3-regular, biconnected series-parallel graph, which we extend to any biconnected series-parallel graph of maximum degree at most 3. Since the biconnected components of every graph oftreewidth 2 are series-parallel graphs, this yields, by use of bar-amalgamation, a quadratic-time algorithm for every graph of treewidth at most 2 and maximum degree at most 3.
Czech name
—
Czech description
—
Classification
Type
J<sub>x</sub> - Unclassified - Peer-reviewed scientific article (Jimp, Jsc and Jost)
CEP classification
IN - Informatics
OECD FORD branch
—
Result continuities
Project
<a href="/en/project/EE2.3.30.0009" target="_blank" >EE2.3.30.0009: Employment of Newly Graduated Doctors of Science for Scientific Excellence</a><br>
Continuities
P - Projekt vyzkumu a vyvoje financovany z verejnych zdroju (s odkazem do CEP)
Others
Publication year
2014
Confidentiality
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Data specific for result type
Name of the periodical
Discrete Mathematics & Theoretical Computer Science
ISSN
1365-8050
e-ISSN
—
Volume of the periodical
Vol. 16
Issue of the periodical within the volume
No. 3
Country of publishing house
FR - FRANCE
Number of pages
18
Pages from-to
129-146
UT code for WoS article
—
EID of the result in the Scopus database
—