The Planar Slope Number of Planar Partial 3-Trees of Bounded Degree
The result's identifiers
Result code in IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F00216208%3A11320%2F10%3A10051697" target="_blank" >RIV/00216208:11320/10:10051697 - isvavai.cz</a>
Result on the web
—
DOI - Digital Object Identifier
—
Alternative languages
Result language
angličtina
Original language name
The Planar Slope Number of Planar Partial 3-Trees of Bounded Degree
Original language description
It is known that every planar graph has a planar embedding where edges are represented by non-crossing straight-line segments. We study the planar slope number, i.e., the minimum number of distinct edge-slopes in such a drawing of a planar graph with maximum degree delta. We show that the planar slope number of every series-parallel graph of maximum degree three is three. We also show that the planar slope number of every planar partial 3-tree and also every plane partial 3-tree is at most 2^O(delta). In particular, we answer the question of Dujmović et al. [Computational Geometry 38 (3), pp. 194-212 (2007)] whether there is a function f such that plane maximal outerplanar graphs can be drawn using at most f(delta) slopes.
Czech name
—
Czech description
—
Classification
Type
D - Article in proceedings
CEP classification
BA - General mathematics
OECD FORD branch
—
Result continuities
Project
<a href="/en/project/1M0545" target="_blank" >1M0545: Institute for Theoretical Computer Science</a><br>
Continuities
P - Projekt vyzkumu a vyvoje financovany z verejnych zdroju (s odkazem do CEP)<br>Z - Vyzkumny zamer (s odkazem do CEZ)
Others
Publication year
2010
Confidentiality
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Data specific for result type
Article name in the collection
Graph Drawing
ISBN
978-3-642-11804-3
ISSN
0302-9743
e-ISSN
—
Number of pages
12
Pages from-to
—
Publisher name
Springer
Place of publication
Berlín, Německo
Event location
Chicago, USA
Event date
Sep 22, 2009
Type of event by nationality
WRD - Celosvětová akce
UT code for WoS article
000279285200027