The Planar Slope Number of Planar Partial 3-Trees of Bounded Degree
The result's identifiers
Result code in IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F00216208%3A11320%2F13%3A10135345" target="_blank" >RIV/00216208:11320/13:10135345 - isvavai.cz</a>
Result on the web
<a href="http://dx.doi.org/10.1007/s00373-012-1157-z" target="_blank" >http://dx.doi.org/10.1007/s00373-012-1157-z</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.1007/s00373-012-1157-z" target="_blank" >10.1007/s00373-012-1157-z</a>
Alternative languages
Result language
angličtina
Original language name
The Planar Slope Number of Planar Partial 3-Trees of Bounded Degree
Original language description
It is known that every planar graph has a planar embedding where edges are represented by non-crossing straight-line segments. We study the planar slope number, i.e., the minimum number of distinct edge-slopes in such a drawing of a planar graph with maximum degree D. We show that the planar slope number of every planar partial 3-tree and also every plane partial 3-tree is at most O(D^5). In particular, we answer the question of Dujmovic et al. (Comput. Geom 38(3):194-212, 2007) whether there is a function f such that plane maximal outerplanar graphs can be drawn using at most f (D) slopes.
Czech name
—
Czech description
—
Classification
Type
J<sub>x</sub> - Unclassified - Peer-reviewed scientific article (Jimp, Jsc and Jost)
CEP classification
BA - General mathematics
OECD FORD branch
—
Result continuities
Project
Result was created during the realization of more than one project. More information in the Projects tab.
Continuities
P - Projekt vyzkumu a vyvoje financovany z verejnych zdroju (s odkazem do CEP)<br>Z - Vyzkumny zamer (s odkazem do CEZ)
Others
Publication year
2013
Confidentiality
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Data specific for result type
Name of the periodical
Graphs and Combinatorics
ISSN
0911-0119
e-ISSN
—
Volume of the periodical
29
Issue of the periodical within the volume
4
Country of publishing house
JP - JAPAN
Number of pages
25
Pages from-to
981-1005
UT code for WoS article
000320823800018
EID of the result in the Scopus database
—