A Single-Exponential Fixed-Parameter Algorithm for Distance-Hereditary Vertex Deletion
The result's identifiers
Result code in IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F00216224%3A14330%2F16%3A00093948" target="_blank" >RIV/00216224:14330/16:00093948 - isvavai.cz</a>
Result on the web
<a href="http://dx.doi.org/10.4230/LIPIcs.MFCS.2016.34" target="_blank" >http://dx.doi.org/10.4230/LIPIcs.MFCS.2016.34</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.4230/LIPIcs.MFCS.2016.34" target="_blank" >10.4230/LIPIcs.MFCS.2016.34</a>
Alternative languages
Result language
angličtina
Original language name
A Single-Exponential Fixed-Parameter Algorithm for Distance-Hereditary Vertex Deletion
Original language description
Vertex deletion problems ask whether it is possible to delete at most k vertices from a graph so that the resulting graph belongs to a specified graph class. Over the past years, the parameterized complexity of vertex deletion to a plethora of graph classes has been systematically researched. Here we present the first single-exponential fixed-parameter algorithm for vertex deletion to distance-hereditary graphs, a well-studied graph class which is particularly important in the context of vertex deletion due to its connection to the graph parameter rank-width. We complement our result with matching asymptotic lower bounds based on the exponential time hypothesis.
Czech name
—
Czech description
—
Classification
Type
D - Article in proceedings
CEP classification
IN - Informatics
OECD FORD branch
—
Result continuities
Project
—
Continuities
I - Institucionalni podpora na dlouhodoby koncepcni rozvoj vyzkumne organizace
Others
Publication year
2016
Confidentiality
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Data specific for result type
Article name in the collection
41st International Symposium on Mathematical Foundations of Computer Science, {MFCS} 2016, August 22-26, 2016 - Krak{'{o}}w, Poland
ISBN
9783959770163
ISSN
1868-8969
e-ISSN
—
Number of pages
14
Pages from-to
34,1-14
Publisher name
Schloss Dagstuhl - Leibniz-Zentrum fuer Informatik
Place of publication
Germany
Event location
Poland
Event date
Jan 1, 2016
Type of event by nationality
WRD - Celosvětová akce
UT code for WoS article
—