All

What are you looking for?

All
Projects
Results
Organizations

Quick search

  • Projects supported by TA ČR
  • Excellent projects
  • Projects with the highest public support
  • Current projects

Smart search

  • That is how I find a specific +word
  • That is how I leave the -word out of the results
  • “That is how I can find the whole phrase”

On Existential MSO and its Relation to ETH

The result's identifiers

  • Result code in IS VaVaI

    <a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F00216224%3A14330%2F16%3A00093950" target="_blank" >RIV/00216224:14330/16:00093950 - isvavai.cz</a>

  • Result on the web

    <a href="http://dx.doi.org/10.4230/LIPIcs.MFCS.2016.42" target="_blank" >http://dx.doi.org/10.4230/LIPIcs.MFCS.2016.42</a>

  • DOI - Digital Object Identifier

    <a href="http://dx.doi.org/10.4230/LIPIcs.MFCS.2016.42" target="_blank" >10.4230/LIPIcs.MFCS.2016.42</a>

Alternative languages

  • Result language

    angličtina

  • Original language name

    On Existential MSO and its Relation to ETH

  • Original language description

    Impagliazzo et al. proposed a framework, based on the logic fragment defining the complexity class SNP, to identify problems that are equivalent to k-CNF-Sat modulo subexponential-time reducibility (serf-reducibility). The subexponential-time solvability of any of these problems implies the failure of the Exponential Time Hypothesis (ETH). In this paper, we extend the framework of Impagliazzo et al., and identify a larger set of problems that are equivalent to k-CNF-Sat modulo serf-reducibility. We propose a complexity class, referred to as Linear Monadic NP, that consists of all problems expressible in existential monadic second order logic whose expressions have a linear measure in terms of a complexity parameter, which is usually the universe size of the problem. This research direction can be traced back to Fagin's celebrated theorem stating that NP coincides with the class of problems expressible in existential second order logic.

  • Czech name

  • Czech description

Classification

  • Type

    D - Article in proceedings

  • CEP classification

    IN - Informatics

  • OECD FORD branch

Result continuities

  • Project

  • Continuities

    I - Institucionalni podpora na dlouhodoby koncepcni rozvoj vyzkumne organizace

Others

  • Publication year

    2016

  • Confidentiality

    S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů

Data specific for result type

  • Article name in the collection

    41st International Symposium on Mathematical Foundations of Computer Science, MFCS 2016, August 22-26

  • ISBN

    9783959770163

  • ISSN

    1868-8969

  • e-ISSN

  • Number of pages

    14

  • Pages from-to

    42,1-14

  • Publisher name

    Schloss Dagstuhl - Leibniz-Zentrum fuer Informatik

  • Place of publication

    Germany

  • Event location

    Poland

  • Event date

    Jan 1, 2016

  • Type of event by nationality

    WRD - Celosvětová akce

  • UT code for WoS article