All

What are you looking for?

All
Projects
Results
Organizations

Quick search

  • Projects supported by TA ČR
  • Excellent projects
  • Projects with the highest public support
  • Current projects

Smart search

  • That is how I find a specific +word
  • That is how I leave the -word out of the results
  • “That is how I can find the whole phrase”

A Real-Time Annotation of Motion Data Streams

The result's identifiers

  • Result code in IS VaVaI

    <a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F00216224%3A14330%2F17%3A00094976" target="_blank" >RIV/00216224:14330/17:00094976 - isvavai.cz</a>

  • Result on the web

    <a href="http://dx.doi.org/10.1109/ISM.2017.29" target="_blank" >http://dx.doi.org/10.1109/ISM.2017.29</a>

  • DOI - Digital Object Identifier

    <a href="http://dx.doi.org/10.1109/ISM.2017.29" target="_blank" >10.1109/ISM.2017.29</a>

Alternative languages

  • Result language

    angličtina

  • Original language name

    A Real-Time Annotation of Motion Data Streams

  • Original language description

    Current motion-capture technologies produce continuous streams of 3D human joint trajectories. One of the challenges is to automatically annotate such streams of complex spatio-temporal data in real time. In this paper, we propose an efficient approach to label motion stream data in real time with a limited usage of main memory. Based on a set of user-defined motion profiles, each of them specified by multiple representative samples, the currently visible part of an input motion stream is processed by identifying a moderate number of segments of various lengths. These segments are compared to the profiles to measure their similarity. The segments having a high similarity to a given motion profile are annotated with the corresponding label. The proposed approach performs fast, allows profiles to be dynamically changed at runtime, and does not require any learning procedure, in comparison with existing solutions evaluated on real-life data.

  • Czech name

  • Czech description

Classification

  • Type

    D - Article in proceedings

  • CEP classification

  • OECD FORD branch

    10201 - Computer sciences, information science, bioinformathics (hardware development to be 2.2, social aspect to be 5.8)

Result continuities

  • Project

    <a href="/en/project/GA16-18889S" target="_blank" >GA16-18889S: Big Data Analytics for Unstructured Data</a><br>

  • Continuities

    P - Projekt vyzkumu a vyvoje financovany z verejnych zdroju (s odkazem do CEP)<br>S - Specificky vyzkum na vysokych skolach

Others

  • Publication year

    2017

  • Confidentiality

    S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů

Data specific for result type

  • Article name in the collection

    19th IEEE International Symposium on Multimedia

  • ISBN

    9781538629376

  • ISSN

  • e-ISSN

  • Number of pages

    8

  • Pages from-to

    154-161

  • Publisher name

    IEEE Computer Society

  • Place of publication

    Neuveden

  • Event location

    Taichung, Taiwan

  • Event date

    Jan 1, 2017

  • Type of event by nationality

    WRD - Celosvětová akce

  • UT code for WoS article