A Real-Time Annotation of Motion Data Streams
The result's identifiers
Result code in IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F00216224%3A14330%2F17%3A00094976" target="_blank" >RIV/00216224:14330/17:00094976 - isvavai.cz</a>
Result on the web
<a href="http://dx.doi.org/10.1109/ISM.2017.29" target="_blank" >http://dx.doi.org/10.1109/ISM.2017.29</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.1109/ISM.2017.29" target="_blank" >10.1109/ISM.2017.29</a>
Alternative languages
Result language
angličtina
Original language name
A Real-Time Annotation of Motion Data Streams
Original language description
Current motion-capture technologies produce continuous streams of 3D human joint trajectories. One of the challenges is to automatically annotate such streams of complex spatio-temporal data in real time. In this paper, we propose an efficient approach to label motion stream data in real time with a limited usage of main memory. Based on a set of user-defined motion profiles, each of them specified by multiple representative samples, the currently visible part of an input motion stream is processed by identifying a moderate number of segments of various lengths. These segments are compared to the profiles to measure their similarity. The segments having a high similarity to a given motion profile are annotated with the corresponding label. The proposed approach performs fast, allows profiles to be dynamically changed at runtime, and does not require any learning procedure, in comparison with existing solutions evaluated on real-life data.
Czech name
—
Czech description
—
Classification
Type
D - Article in proceedings
CEP classification
—
OECD FORD branch
10201 - Computer sciences, information science, bioinformathics (hardware development to be 2.2, social aspect to be 5.8)
Result continuities
Project
<a href="/en/project/GA16-18889S" target="_blank" >GA16-18889S: Big Data Analytics for Unstructured Data</a><br>
Continuities
P - Projekt vyzkumu a vyvoje financovany z verejnych zdroju (s odkazem do CEP)<br>S - Specificky vyzkum na vysokych skolach
Others
Publication year
2017
Confidentiality
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Data specific for result type
Article name in the collection
19th IEEE International Symposium on Multimedia
ISBN
9781538629376
ISSN
—
e-ISSN
—
Number of pages
8
Pages from-to
154-161
Publisher name
IEEE Computer Society
Place of publication
Neuveden
Event location
Taichung, Taiwan
Event date
Jan 1, 2017
Type of event by nationality
WRD - Celosvětová akce
UT code for WoS article
—