Divisibility of quantum dynamical maps and collision models
The result's identifiers
Result code in IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F00216224%3A14330%2F17%3A00095466" target="_blank" >RIV/00216224:14330/17:00095466 - isvavai.cz</a>
Result on the web
<a href="https://doi.org/10.1103/PhysRevA.96.032111" target="_blank" >https://doi.org/10.1103/PhysRevA.96.032111</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.1103/PhysRevA.96.032111" target="_blank" >10.1103/PhysRevA.96.032111</a>
Alternative languages
Result language
angličtina
Original language name
Divisibility of quantum dynamical maps and collision models
Original language description
The divisibility of dynamical maps is visualized by trajectories in the parameter space and analyzed within the framework of collision models. We introduce ultimate completely positive (CP) divisible processes, which lose CP divisibility under infinitesimal perturbations, and characterize Pauli dynamical semigroups exhibiting such a property. We construct collision models with factorized environment particles, which realize additivity and multiplicativity of generators of CP divisible maps. A mixture of dynamical maps is obtained with the help of correlated environment. The mixture of ultimate CP divisible processes is shown to result in a class of eternal CP indivisible evolutions. We explicitly find collision models leading to weakly and essentially non-Markovian Pauli dynamical maps.
Czech name
—
Czech description
—
Classification
Type
J<sub>imp</sub> - Article in a specialist periodical, which is included in the Web of Science database
CEP classification
—
OECD FORD branch
10303 - Particles and field physics
Result continuities
Project
<a href="/en/project/GA16-22211S" target="_blank" >GA16-22211S: Rényi entropies in quantum information processing</a><br>
Continuities
P - Projekt vyzkumu a vyvoje financovany z verejnych zdroju (s odkazem do CEP)
Others
Publication year
2017
Confidentiality
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Data specific for result type
Name of the periodical
Physical Review A
ISSN
2469-9926
e-ISSN
—
Volume of the periodical
96
Issue of the periodical within the volume
3
Country of publishing house
US - UNITED STATES
Number of pages
13
Pages from-to
032111
UT code for WoS article
000410860100002
EID of the result in the Scopus database
2-s2.0-85029585618