Divisibility of qubit channels and dynamical maps
The result's identifiers
Result code in IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F00216224%3A14330%2F19%3A00107862" target="_blank" >RIV/00216224:14330/19:00107862 - isvavai.cz</a>
Result on the web
<a href="http://dx.doi.org/10.22331/q-2019-05-20-144" target="_blank" >http://dx.doi.org/10.22331/q-2019-05-20-144</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.22331/q-2019-05-20-144" target="_blank" >10.22331/q-2019-05-20-144</a>
Alternative languages
Result language
angličtina
Original language name
Divisibility of qubit channels and dynamical maps
Original language description
The concept of divisibility of dynamical maps is used to introduce an analogous concept for quantum channels by analyzing the simulability of channels by means of dynamical maps. In particular, this is addressed for Lindblad divisible, completely positive divisible and positive divisible dynamical maps. The corresponding L-divisible, CP-divisible and P-divisible subsets of channels are characterized (exploiting the results by Wolf et al. [25]) and visualized for the case of qubit channels. We discuss the general inclusions among divisibility sets and show several equivalences for qubit channels. To this end we study the conditions of L-divisibility for finite dimensional channels, especially the cases with negative eigen-values, extending and completing the results of Ref. [26]. Furthermore we show that transitions between every two of the defined divisibility sets are allowed. We explore particular examples of dynamical maps to compare these concepts. Finally, we show that every divisible but not infinitesimal divisible qubit channel (in positive maps) is entanglement-breaking, and open the question if something similar occurs for higher dimensions.
Czech name
—
Czech description
—
Classification
Type
J<sub>imp</sub> - Article in a specialist periodical, which is included in the Web of Science database
CEP classification
—
OECD FORD branch
10300 - Physical sciences
Result continuities
Project
<a href="/en/project/GA16-22211S" target="_blank" >GA16-22211S: Rényi entropies in quantum information processing</a><br>
Continuities
P - Projekt vyzkumu a vyvoje financovany z verejnych zdroju (s odkazem do CEP)
Others
Publication year
2019
Confidentiality
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Data specific for result type
Name of the periodical
QUANTUM
ISSN
2521-327X
e-ISSN
—
Volume of the periodical
3
Issue of the periodical within the volume
n.a.
Country of publishing house
AT - AUSTRIA
Number of pages
14
Pages from-to
144
UT code for WoS article
000468479300003
EID of the result in the Scopus database
2-s2.0-85076342071