All

What are you looking for?

All
Projects
Results
Organizations

Quick search

  • Projects supported by TA ČR
  • Excellent projects
  • Projects with the highest public support
  • Current projects

Smart search

  • That is how I find a specific +word
  • That is how I leave the -word out of the results
  • “That is how I can find the whole phrase”

Cost-Sensitive Strategies for Data Imbalance in Bug Severity Classification: Experimental Results

The result's identifiers

  • Result code in IS VaVaI

    <a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F00216224%3A14330%2F17%3A00100027" target="_blank" >RIV/00216224:14330/17:00100027 - isvavai.cz</a>

  • Result on the web

    <a href="http://dx.doi.org/10.1109/SEAA.2017.71" target="_blank" >http://dx.doi.org/10.1109/SEAA.2017.71</a>

  • DOI - Digital Object Identifier

    <a href="http://dx.doi.org/10.1109/SEAA.2017.71" target="_blank" >10.1109/SEAA.2017.71</a>

Alternative languages

  • Result language

    angličtina

  • Original language name

    Cost-Sensitive Strategies for Data Imbalance in Bug Severity Classification: Experimental Results

  • Original language description

    Context: Software Bug Severity Classification can help to improve the software bug triaging process. However, severity levels present a high-level of data imbalance that needs to be taken into account. Aim: We investigate cost-sensitive strategies in multi-class bug severity classification to counteract data imbalance. Method: We transform datasets from three severity classification papers to a common format, totaling 17 projects. We test different cost sensitive strategies to penalize majority classes. We adopt a Support Vector Machine (SVM) classifier that we also compare to a baseline "majority class" classifier. Results: A model weighting classes based on the inverse of instance frequencies yields a statistically significant improvement (low effect size) over the standard unweighted SVM model in the assembled dataset. Conclusions: Data imbalance should be taken more into consideration in future severity classification research papers.

  • Czech name

  • Czech description

Classification

  • Type

    D - Article in proceedings

  • CEP classification

  • OECD FORD branch

    10201 - Computer sciences, information science, bioinformathics (hardware development to be 2.2, social aspect to be 5.8)

Result continuities

  • Project

  • Continuities

    S - Specificky vyzkum na vysokych skolach

Others

  • Publication year

    2017

  • Confidentiality

    S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů

Data specific for result type

  • Article name in the collection

    43rd Euromicro Conference on Software Engineering and Advanced Applications (SEAA) 2017

  • ISBN

    9781538621400

  • ISSN

  • e-ISSN

  • Number of pages

    4

  • Pages from-to

    426-429

  • Publisher name

    IEEE

  • Place of publication

    Not specified

  • Event location

    Vienna

  • Event date

    Jan 1, 2017

  • Type of event by nationality

    WRD - Celosvětová akce

  • UT code for WoS article

    000426074600063