Predicting regional credit ratings using ensemble classification with metacost
The result's identifiers
Result code in IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F00216275%3A25410%2F19%3A39914921" target="_blank" >RIV/00216275:25410/19:39914921 - isvavai.cz</a>
Result on the web
<a href="https://link.springer.com/chapter/10.1007/978-3-030-19810-7_33" target="_blank" >https://link.springer.com/chapter/10.1007/978-3-030-19810-7_33</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.1007/978-3-030-19810-7_33" target="_blank" >10.1007/978-3-030-19810-7_33</a>
Alternative languages
Result language
angličtina
Original language name
Predicting regional credit ratings using ensemble classification with metacost
Original language description
Ensemble classifiers are learning algorithms that combine sets of base classifiers in order to increase their diversity and, thus, decrease variance and achieve better predictive performance compared to single classifiers. Previous research has shown that ensemble classifiers are more accurate than single classifiers in predicting credit ratings. Here we deal with highly imbalanced multi-class data of regional entities. To overcome these problems, we propose a novel hybrid model combining data oversampling and cost-sensitive ensemble classification. This paper demonstrates that the use of the SMOTE technique to balance the multi-class data solves the imbalance problem effectively. Different misclassification cost assigned in cost matrix solves the problem of ordered classes. This approach is combined with ensemble classification within the MetaCost framework. We show that more accurate prediction can be achieved using this approach in terms of average cost and area under ROC. This paper provides empirical evidence on the dataset of 451 regions classified into 8 rating classes, as obtained from the Moody’s rating agency. The results show that Random Forest combined with MetaCost outperforms the rest of the base classifiers, as well as other benchmark methods.
Czech name
—
Czech description
—
Classification
Type
D - Article in proceedings
CEP classification
—
OECD FORD branch
10201 - Computer sciences, information science, bioinformathics (hardware development to be 2.2, social aspect to be 5.8)
Result continuities
Project
—
Continuities
S - Specificky vyzkum na vysokych skolach<br>I - Institucionalni podpora na dlouhodoby koncepcni rozvoj vyzkumne organizace
Others
Publication year
2019
Confidentiality
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Data specific for result type
Article name in the collection
Artificial Intelligence Methods in Intelligent Algorithms : Proceedings of 8th Computer Science On-line Conference 2019, Vol. 2
ISBN
978-3-030-19809-1
ISSN
2194-5357
e-ISSN
—
Number of pages
11
Pages from-to
332-342
Publisher name
Springer Nature
Place of publication
Heidelberg
Event location
Praha
Event date
Apr 24, 2019
Type of event by nationality
WRD - Celosvětová akce
UT code for WoS article
000503762800033