All

What are you looking for?

All
Projects
Results
Organizations

Quick search

  • Projects supported by TA ČR
  • Excellent projects
  • Projects with the highest public support
  • Current projects

Smart search

  • That is how I find a specific +word
  • That is how I leave the -word out of the results
  • “That is how I can find the whole phrase”

Predicting Firms' Credit Ratings Using Ensembles of Artificial Immune Systems and Machine Learning - An Over-Sampling Approach

The result's identifiers

  • Result code in IS VaVaI

    <a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F00216275%3A25410%2F14%3A39898557" target="_blank" >RIV/00216275:25410/14:39898557 - isvavai.cz</a>

  • Result on the web

    <a href="http://dx.doi.org/10.1007/978-3-662-44654-6_3" target="_blank" >http://dx.doi.org/10.1007/978-3-662-44654-6_3</a>

  • DOI - Digital Object Identifier

    <a href="http://dx.doi.org/10.1007/978-3-662-44654-6_3" target="_blank" >10.1007/978-3-662-44654-6_3</a>

Alternative languages

  • Result language

    angličtina

  • Original language name

    Predicting Firms' Credit Ratings Using Ensembles of Artificial Immune Systems and Machine Learning - An Over-Sampling Approach

  • Original language description

    This paper examines the classification performance of artificial immune systems on the one hand and machine learning and neural networks on the other hand on the problem of forecasting credit ratings of firms. The problem is realized as a two-class problem, for investment and non-investment rating grades. The dataset is usually imbalanced in credit rating predictions. We address the issue by over-sampling the minority class in the training dataset. The experimental results show that this approach leads to significantly higher classification accuracy. Additionally, the use of the ensembles of classifiers makes the prediction even more accurate.

  • Czech name

  • Czech description

Classification

  • Type

    D - Article in proceedings

  • CEP classification

    AE - Management, administration and clerical work

  • OECD FORD branch

Result continuities

  • Project

    <a href="/en/project/GA13-10331S" target="_blank" >GA13-10331S: The role of text information in corporate financial distress prediction models – country-specific and industry-specific approaches</a><br>

  • Continuities

    P - Projekt vyzkumu a vyvoje financovany z verejnych zdroju (s odkazem do CEP)

Others

  • Publication year

    2014

  • Confidentiality

    S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů

Data specific for result type

  • Article name in the collection

    Artificial Intelligence Applications and Innovations: 10th IFIP WG 12.5 International Conference, AIAI 2014, Rhodes, Greece, September 19-21, 2014, Proceedings

  • ISBN

    978-3-662-44653-9

  • ISSN

    1868-4238

  • e-ISSN

  • Number of pages

    10

  • Pages from-to

    29-38

  • Publisher name

    Springer

  • Place of publication

    Heidelberg

  • Event location

    Rhodos

  • Event date

    Sep 19, 2014

  • Type of event by nationality

    WRD - Celosvětová akce

  • UT code for WoS article