ConceptRank for search-based image annotation
The result's identifiers
Result code in IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F00216224%3A14330%2F18%3A00100721" target="_blank" >RIV/00216224:14330/18:00100721 - isvavai.cz</a>
Result on the web
<a href="http://dx.doi.org/10.1007/s11042-017-4777-8" target="_blank" >http://dx.doi.org/10.1007/s11042-017-4777-8</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.1007/s11042-017-4777-8" target="_blank" >10.1007/s11042-017-4777-8</a>
Alternative languages
Result language
angličtina
Original language name
ConceptRank for search-based image annotation
Original language description
Multimedia information is becoming an ubiquitous part of our lives, which brings an equally ubiquitous need for efficient multimedia retrieval. One of the possible solutions to this problem is to attach text descriptions to multimedia data objects, thus allowing users to utilize traditional text search mechanisms. Search-based annotation techniques attempt to determine the descriptive keywords by analyzing the descriptions of similar, already annotated multimedia objects, which are detected by content-based retrieval techniques. One of the main challenges of this approach is the extraction of semantically connected keywords from the possibly noisy descriptions of similar objects. In this paper, we address this challenge by proposing the ConceptRank, a new keyword ranking algorithm that exploits semantic relationships between candidate keywords and utilizes the random walk mechanism to compute the probability of individual candidates. The effectiveness of the ConceptRank algorithm is evaluated in context of web image annotation. We present a complex image annotation system that includes the ConceptRank component, and compare it to other state-of-the–art annotation techniques.
Czech name
—
Czech description
—
Classification
Type
J<sub>imp</sub> - Article in a specialist periodical, which is included in the Web of Science database
CEP classification
—
OECD FORD branch
10201 - Computer sciences, information science, bioinformathics (hardware development to be 2.2, social aspect to be 5.8)
Result continuities
Project
<a href="/en/project/GBP103%2F12%2FG084" target="_blank" >GBP103/12/G084: Center for Large Scale Multi-modal Data Interpretation</a><br>
Continuities
P - Projekt vyzkumu a vyvoje financovany z verejnych zdroju (s odkazem do CEP)
Others
Publication year
2018
Confidentiality
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Data specific for result type
Name of the periodical
Multimedia Tools and Applications
ISSN
1380-7501
e-ISSN
—
Volume of the periodical
77
Issue of the periodical within the volume
7
Country of publishing house
US - UNITED STATES
Number of pages
36
Pages from-to
8847-8882
UT code for WoS article
000429355800048
EID of the result in the Scopus database
—