All

What are you looking for?

All
Projects
Results
Organizations

Quick search

  • Projects supported by TA ČR
  • Excellent projects
  • Projects with the highest public support
  • Current projects

Smart search

  • That is how I find a specific +word
  • That is how I leave the -word out of the results
  • “That is how I can find the whole phrase”

Multi-modal Image Retrieval for Search-based Image Annotation with RF

The result's identifiers

  • Result code in IS VaVaI

    <a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F00216224%3A14330%2F18%3A00101829" target="_blank" >RIV/00216224:14330/18:00101829 - isvavai.cz</a>

  • Result on the web

    <a href="http://dx.doi.org/10.1109/ISM.2018.00017" target="_blank" >http://dx.doi.org/10.1109/ISM.2018.00017</a>

  • DOI - Digital Object Identifier

    <a href="http://dx.doi.org/10.1109/ISM.2018.00017" target="_blank" >10.1109/ISM.2018.00017</a>

Alternative languages

  • Result language

    angličtina

  • Original language name

    Multi-modal Image Retrieval for Search-based Image Annotation with RF

  • Original language description

    Search-based annotation methods can be used for proposing descriptive keywords to users who need to annotate images e.g. in image stock databases. From the annotation output, users select keywords which they want to assign to the given image. The selected keywords can serve as a relevance feedback for additional annotation refinement. In this paper, we study the possibilities of exploiting the annotation relevance feedback, which is a novel problem that has not been systematically addressed yet. In particular, we focus on the subtask of utilizing the feedback for the retrieval of related annotated images that are subsequently used for mining of candidate keywords. We select three multi-modal search techniques that can be applied to this problem, implement them within a state-of-the-art search-based annotation system, and experimentally evaluate their usefulness for annotation quality improvement.

  • Czech name

  • Czech description

Classification

  • Type

    D - Article in proceedings

  • CEP classification

  • OECD FORD branch

    10201 - Computer sciences, information science, bioinformathics (hardware development to be 2.2, social aspect to be 5.8)

Result continuities

  • Project

    <a href="/en/project/GA16-18889S" target="_blank" >GA16-18889S: Big Data Analytics for Unstructured Data</a><br>

  • Continuities

    P - Projekt vyzkumu a vyvoje financovany z verejnych zdroju (s odkazem do CEP)

Others

  • Publication year

    2018

  • Confidentiality

    S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů

Data specific for result type

  • Article name in the collection

    2018 IEEE INTERNATIONAL SYMPOSIUM ON MULTIMEDIA (ISM 2018)

  • ISBN

    9781538668573

  • ISSN

  • e-ISSN

  • Number of pages

    9

  • Pages from-to

    52-60

  • Publisher name

    IEEE

  • Place of publication

    NEW YORK

  • Event location

    Taichung, TAIWAN

  • Event date

    Dec 10, 2018

  • Type of event by nationality

    WRD - Celosvětová akce

  • UT code for WoS article

    000459863600009