All

What are you looking for?

All
Projects
Results
Organizations

Quick search

  • Projects supported by TA ČR
  • Excellent projects
  • Projects with the highest public support
  • Current projects

Smart search

  • That is how I find a specific +word
  • That is how I leave the -word out of the results
  • “That is how I can find the whole phrase”

ON THE USE OF GRAPHEME MODELS FOR SEARCHING IN LARGE SPOKEN ARCHIVES

The result's identifiers

  • Result code in IS VaVaI

    <a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F00216224%3A14330%2F18%3A00100802" target="_blank" >RIV/00216224:14330/18:00100802 - isvavai.cz</a>

  • Alternative codes found

    RIV/49777513:23520/18:43952766

  • Result on the web

    <a href="http://dx.doi.org/10.1109/ICASSP.2018.8461774" target="_blank" >http://dx.doi.org/10.1109/ICASSP.2018.8461774</a>

  • DOI - Digital Object Identifier

    <a href="http://dx.doi.org/10.1109/ICASSP.2018.8461774" target="_blank" >10.1109/ICASSP.2018.8461774</a>

Alternative languages

  • Result language

    angličtina

  • Original language name

    ON THE USE OF GRAPHEME MODELS FOR SEARCHING IN LARGE SPOKEN ARCHIVES

  • Original language description

    This paper explores the possibility to use grapheme-based word and sub-word models in the task of spoken term detection (STD). The usage of grapheme models eliminates the need for expert-prepared pronunciation lexicons (which are often far from complete) and/or trainable grapheme-to-phoneme (G2P) algorithms that are frequently rather inaccurate, especially for rare words (words coming from a different language). Moreover, the G2P conversion of the search terms that need to be performed on-line can substantially increase the response time of the STD system. Our results show that using various grapheme-based models, we can achieve STD performance (measured in terms of ATWV) comparable with phoneme-based models but without the additional burden of G2P conversion.

  • Czech name

  • Czech description

Classification

  • Type

    D - Article in proceedings

  • CEP classification

  • OECD FORD branch

    10201 - Computer sciences, information science, bioinformathics (hardware development to be 2.2, social aspect to be 5.8)

Result continuities

  • Project

    <a href="/en/project/GBP103%2F12%2FG084" target="_blank" >GBP103/12/G084: Center for Large Scale Multi-modal Data Interpretation</a><br>

  • Continuities

    P - Projekt vyzkumu a vyvoje financovany z verejnych zdroju (s odkazem do CEP)

Others

  • Publication year

    2018

  • Confidentiality

    S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů

Data specific for result type

  • Article name in the collection

    43rd IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP 2018)

  • ISBN

    9781538646588

  • ISSN

    1520-6149

  • e-ISSN

  • Number of pages

    5

  • Pages from-to

    6259-6263

  • Publisher name

    IEEE Computer Society

  • Place of publication

    Neuveden

  • Event location

    Calgary, Canada

  • Event date

    Jan 1, 2018

  • Type of event by nationality

    WRD - Celosvětová akce

  • UT code for WoS article

    000446384606084