All

What are you looking for?

All
Projects
Results
Organizations

Quick search

  • Projects supported by TA ČR
  • Excellent projects
  • Projects with the highest public support
  • Current projects

Smart search

  • That is how I find a specific +word
  • That is how I leave the -word out of the results
  • “That is how I can find the whole phrase”

Using Auto-Encoder BiLSTM Neural Network for Czech Grapheme-to-Phoneme Conversion

The result's identifiers

  • Result code in IS VaVaI

    <a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F49777513%3A23520%2F19%3A43955897" target="_blank" >RIV/49777513:23520/19:43955897 - isvavai.cz</a>

  • Result on the web

    <a href="https://link.springer.com/chapter/10.1007%2F978-3-030-27947-9_8" target="_blank" >https://link.springer.com/chapter/10.1007%2F978-3-030-27947-9_8</a>

  • DOI - Digital Object Identifier

    <a href="http://dx.doi.org/10.1007/978-3-030-27947-9_8" target="_blank" >10.1007/978-3-030-27947-9_8</a>

Alternative languages

  • Result language

    angličtina

  • Original language name

    Using Auto-Encoder BiLSTM Neural Network for Czech Grapheme-to-Phoneme Conversion

  • Original language description

    The crucial part of almost all current TTS systems is a grapheme-to-phoneme (G2P) conversion, i.e. the transcription of any input grapheme sequence into the correct sequence of phonemes in the given language. Unfortunately, the preparation of transcription rules and pronunciation dictionaries is not an easy process for new languages in TTS systems. For that reason, in the presented paper, we focus on the creation of an automatic G2P model, based on neural networks (NN). But, contrary to the majority of related works in G2P field, using only separate words as an input, we consider a whole phrase the input of our proposed NN model. That approach should, in our opinion, lead to more precise phonetic transcription output because the pronunciation of a word can depend on the surrounding words. The results of the trained G2P model are presented on the Czech language where the cross-word-boundary phenomena occur quite often, and they are compared to the rule-based approach.

  • Czech name

  • Czech description

Classification

  • Type

    D - Article in proceedings

  • CEP classification

  • OECD FORD branch

    20205 - Automation and control systems

Result continuities

  • Project

    <a href="/en/project/GA19-19324S" target="_blank" >GA19-19324S: Fully Trainable Deep Neural Network Based Czech Text-to-Speech Synthesis</a><br>

  • Continuities

    P - Projekt vyzkumu a vyvoje financovany z verejnych zdroju (s odkazem do CEP)

Others

  • Publication year

    2019

  • Confidentiality

    S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů

Data specific for result type

  • Article name in the collection

    Text, Speech, and Dialogue 22nd International Conference, TSD 2019, Ljubljana,Slovenia, September 11-13, 2019, Proceedings

  • ISBN

    978-3-030-27946-2

  • ISSN

    0302-9743

  • e-ISSN

    1611-3349

  • Number of pages

    12

  • Pages from-to

    91-102

  • Publisher name

    Springer

  • Place of publication

    Cham

  • Event location

    Ljubljana, Slovenia

  • Event date

    Sep 11, 2019

  • Type of event by nationality

    WRD - Celosvětová akce

  • UT code for WoS article